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1 Introduction

Let G be a finite group and k a field. A representation of G over k is simply a homomorphism
from G to GLn(k) for some positive integer n, and via this homomorphism we obtain an action
of G on the natural vector space of GLn(k). A simple definition yields a remarkably rich theory
with a lot of structure to investigate. A typical first course in representation theory will focus
on the case where k is algebraically closed and of characteristic zero, in particular k = C. It
is common, then, to focus on character theory, which associates to each representation of G
a function χ : G → C which is invariant on conjugacy classes of G and is in fact sufficient to
determine the isomorphism type of the representation as a whole. It is possible in this scenario
to work with representations of a group G without ever even dealing with the fact that one has
an action on a vector space, and indeed doing so can yield an abundance of information about
both the group and its representations.

When k is an arbitrary field of characteristic p > 0 with p | |G|, however, character theory is
somewhat weaker. The Brauer characters of G over k still tell us about some of the structure
of its representations, but the information is no longer complete: there exist representations
of G whose Brauer characters are the same but which are not isomorphic. Character theory
still remains a powerful tool in this case, but we often require more information to get what
we want. This is where modular representation theory comes in, and as the name suggests the
focus is typically more on the structure of representations of G over k as kG-modules, or k–vector
spaces equipped with an action of G. Through investigating the structure of the group algebra
kG and its modules, we can again find an abundance of information about the group and its
representations.

The goal of this course is to provide a brief introduction to the representation theory of a finite
group over an algebraically closed field of characteristic p | |G| and give a taste of some of the
methods and structures associated with this work. We largely follow Alperin [1] for this treatment,
which is (by the author’s admission) already a book which attempts to go very deep into the
subject without spending too much time broadening its approach. As such, we shall see a little
bit of a lot of things, but anyone keen to work in this area will absolutely need to read some more
thorough resources. Some other standard texts on representation theory are due to Navarro [14]
and Isaacs [11] with an introduction by James–Liebeck commonly used for undergraduate courses
[12]. For a contemporary overview if one wishes to find out what is currently known, there is
Craven’s guidebook [3] and if one simply wishes for a reference text then one is likely to find any
classical results somewhere in the roughly 2500 pages written by Curtis and Reiner [5, 6, 7].
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Throughout this course, we shall provide a very rapid introduction to the theory of A-modules for
a finite-dimensional algebra A and specialise this to the case of group algebras kG for G a finite
group. We shall introduce the concepts of free and projective modules, prove fundamental results
such as Maschke’s Theorem and investigate the structure of various projective and indecomposable
modules for our group G. Further into the course, we shall begin to relate the structure of kG-
modules to local subgroups of G (that is, normalisers of p-subgroups) and discuss vertices and
sources and prove the Green Correspondence. We then take a brief foray into the theory of blocks,
defect groups and their properties. Finally, we conclude the course with an investigation into
what happens when the defect group of a block (or simply the Sylow p-subgroups of the group
G) are cyclic and show how a structure known as a Brauer tree can be used to fully determine
the structure of the projective indecomposable modules for G, and in fact all indecomposable
modules.

Throughout the course, we revisit the example of SL2(p) to determine all of its irreducible modules,
then its projective indecomposable modules and their distribution into blocks.

2 Modules

In this section, we introduce the concept of modules and provide some of the fundamental results
which we will require throughout the rest of the course. This is considered background material
and so proofs will typically not be provided and for a more thorough treatment of these concepts
the reader is referred to the references listed in this section or any other introductory text on
rings/algebras and modules. All of the material from this section (and a lot more) should lie
somewhere in the introductory chapter of [5], mostly within sections 1–3 and 5. Much (but not
quite all) of this information may also be found in the first two chapters of [1].

Definition 2.1
Let R be a ring. A left R-module is an additive abelian group M with an operation R×M → M
with (r,m) 7→ rm such that, for all r, s ∈ R, m, n ∈ M , the following hold.

• (r + s)m = rm+ sm and r(m+ n) = rm+ rn.

• (rs)m = r(sm).

• 1Rm = m.

The final condition is not always required in all definitions.

Remark
The inclusion of the word left in the above definition suggests, correctly, that there is also a
notion of right R-modules in which one instead has an action M × R → M with (m, r) 7→ mr
and adjusts the above conditions accordingly. In this course we are likely to only use left modules.
It is not uncommon to see the notation RM to denote M as a left R-module or MR to denote M
as a right R-module.

Definition 2.2
Let A be a ring and R a commutative ring. We say that A is an algebra over R (or R-algebra) if
there exists a homomorphism ψ : R → Z(R) such that ψ(1R) = 1A.
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Remark
With this definition, every ring is a Z-algebra.

In this course, by an algebra we will mean a unital, associative algebra; nonassociative algebras
and non-unital algebras are also very important and frequently studied (e.g. Lie algebras) but are
well outside the scope of this course. For simplicity we will also take R to be a field k and assume
that A is finite-dimensional over k (a k-algebra is simply a vector space over k, so this makes
sense). For a more general treatment of this, see the introductory chapter in [5]. In particular,
we will mostly be concerned with algebras of the following type.

Definition 2.3
Let G be a group and k a field. The group algebra kG is the vector space over k with basis G
and multiplication inherited from G extended linearly.

So kG is the set {
∑
g∈G agg | ag ∈ k} with the obvious addition and multiplication operations.

Since our real goal in this course is to investigate the structure of kG and its modules, we will
state the rest of the results in this section for algebras rather than rings.

Notation
For the remainder of this section, A will be an (associative, unital) algebra over an algebraically
closed field k of characteristic p ≥ 0 and M a left A-module. All algebras and modules in this
course are assumed to be finitely generated.

Lemma 2.4
Let M be an A-module. Then we have the following properties for all m ∈ M .

• 0Am = 0M (and so we may write 0 to mean either 0A or 0M with impunity).

• (−1)m = −m.

Now that we have defined a new algebraic structure (thing), we go through the usual motions of
defining subthings, factor things, thing homomorphisms and providing the thing isomorphism
theorems. Even if you’ve never seen these for modules before, you almost certainly already know
what they look like.

Definition 2.5
Given a left A-module M , a (left) A-submodule of M is a subset of M which is itself a left
A-module under the operations inherited from M . If N is a submodule of M we write N ≤ M .
If the only submodules of M are 0 and M , we say that M is simple.

As with most algebraic structures, this boils down to the usual subthing criterion:

Lemma 2.6
Let M be a left A-module. A subset N ⊆ M is a submodule of M if and only if N ̸= ∅, N ≤ M
(N is an additive subgroup of M) and N = AN := {a ∗ n | a ∈ A, n ∈ N}.

Definition 2.7
Let M , N be left R-modules. An A-module homomorphism (or A-homomorphism) from M to
N is a map φ : M → N such that, for all a ∈ A, m, n ∈ M , φ(m + n) = φ(m) + φ(n) and
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φ(am) = aφ(m). If φ is bijective then we call it an isomorphism of A-modules. We denote the
set of such homomorphisms by HomA(M,N) and if M = N we call φ an endomorphism and
denote the set of such maps by EndAM . We will often drop the subscript A from Hom and End
when it is not strictly required. Finally, if φ ∈ EndAM is an isomorphism then we call φ an
automorphism.

Lemma 2.8
Let M , N be left A-modules and φ : M → N be a homomorphism of A-modules. Then kerφ is a
submodule of M and imφ = φ(M) is a submodule of N .

Lemma 2.9 (Schur’s Lemma)
Let M , N be simple A-modules. Then either HomA(M,N) = 0 or M ∼= N and, as vector spaces,
HomA(M,N) = EndM ∼= k. In particular, the only endomorphisms of M are scalar multiples of
the identity.

Schur’s Lemma as stated above does not hold in the case where k is not algebraically closed. We
shall see a little bit of what happens when k is not algebraically closed when we get to talking
about group representations.

Definition 2.10
Let M , N be left A-modules with N ⊆ M . Then the factor group M/N is a left A-module under
the operation a(m+N) = am+N for m+N ∈ M/N , a ∈ A.

As with groups, we have the notion of a composition series for A-modules.

Definition 2.11
Let M be an A-module. A composition series for M is a sequence of submodules 0 = M0 ⊊
M1 ⊊ · · · ⊊Mn = M and for each i we have that Mi+1/Mi is a simple A-module. These simple
quotients are known as the composition factors of M .

In general, a composition series for a module need not exist, but in our case we assume that all
modules are finitely generated and that our algebra A is finite-dimensional over k. This is enough
to assume that our algebra A is an Artinian ring and thus all finite-dimensional A-modules have
composition series. We conclude this brief aside with a theorem that likely looks very familiar.

Theorem 2.12 (Jordan–Hölder)
Suppose that M is a module with two composition series. Then the number of factors in these
series are equal and, up to reordering, the factors are isomorphic as A-modules.

Let M be a simple A-module. Since for any nonzero m ∈ M we have that M = {a ∗m | a ∈ A},
we see that M is in fact a quotient of A as an A-module. Since A is finitely generated, this tells
us that in fact there are only finitely many simple A-modules up to isomorphism

Now it’s time for the thing isomorphism theorems. We begin with a little setup. As is tradition,
if there exists an isomorphism φ : M → N for (left) A-modules M and N we say that M and N
are isomorphic and denote this by M ∼= N . A useful tool in the proof of one of the isomorphism
theorems is the below correspondence theorem for modules, which likely also looks like one you’ve
seen before.

Theorem 2.13 (Correspondence theorem for modules)
Let M be a left A-module and N ⊆ M a submodule. Then every submodule of M/N has the
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form K/N for some submodule K of M containing N and there is an inclusion-preserving 1–1
correspondence (K ↔ K/N) between the submodules K of M containing N and the submodules
of M/N . If M ∼= N then any isomorphism provides a 1–1 correspondence between the submodules
of M and of N .

The below theorems are commonly referred to as the First, Second and Third isomorphism
theorems for modules, respectively.

Theorem 2.14 (Isomorphism theorems for modules)
Let M , N be left A-modules. Then

1. If φ : M → N is an A-module homomorphism then M/ kerφ ∼= imφ.

2. If L, N ≤ M are A-submodules then

L+N

N
∼=

L

L ∩N
.

3. If N and L are submodules of M with N ⊆ L then

M/N

L/N
∼= M/L.

Definition 2.15
Let M and N be A-modules. We define the (external) direct sum to be M ⊕N := {(m,n) | m ∈
M, n ∈ N}. More generally, let {Mi | i ∈ I} be a family of A-modules. Then

⊕
i∈IMi is the set

of all (mi | i ∈ I) such that only finitely many mi are nonzero. If the indexing set I is finite then
this is equivalent to the direct product. Addition is applied componentwise and for a ∈ A we
have a(mi | i ∈ I) = (ami | i ∈ I). The factors Mi are called direct summands.

Now instead let M , N be submodules of some A-module L such that L = M +N := {m+n | m ∈
M, n ∈ N} and each element l ∈ L may be expressed uniquely as a sum l = m+ n for m ∈ M ,
n ∈ N . We then say that L is the (internal) direct sum of M and N and write L = M ⊕N .

The uniqueness condition in the above definition of internal direct sum is, thankfully, equivalent
to checking that M ∩ N = 0. The above two notions of direct sum are also equivalent, so we
may use the symbol ⊕ without having to worry whether the sum is internal or not. For repeated
direct sums of a module, we use the notation M⊕n :=

⊕n
i=1 M .

Definition 2.16
We say that a left A-module M is decomposable if there exist proper nontrivial submodules L,
N ⊆ M such that M = L⊕N . If no such submodules exist, M is indecomposable.

Proposition 2.17
Let M be an A-module. Then M is a direct sum of simple A-modules if and only if every
submodule of M is a direct summand.

Modules satisfying the above equivalent properties are called semisimple.

Definition 2.18
Let M be an A-module. If for every submodule N ⊆ M there exists a submodule L ⊆ M such
that M = N ⊕ L then we say that M is completely reducible.
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Complete reducibility is also equivalent to semisimplicity, but the terms themselves do have
different meanings and it can be helpful to know which one to refer to specifically.

Proposition 2.19
Let M be an A-module. Then M is completely reducible if and only if M is semisimple.

Theorem 2.20 (Krull-Schmidt)
Let M be an A-module such that M = N1 ⊕ N2 ⊕ · · · ⊕ Nr and M = L1 ⊕ L2 ⊕ · · · ⊕ Ls for
integers r, s and all Ni, Li simple. Then r = s and, up to reordering, Ni ∼= Li for all i.

Corollary 2.21
Let L, M , N be A-modules with M ⊕N ∼= M ⊕ L. Then N ∼= L.

Semisimple modules are, in a sense, the easiest modules to deal with. They are a friendly direct
sum of simple modules, and thus if you understand what happens to the simple modules (which
is not necessarily an easy thing to do) you understand everything. We now briefly provide a few
structural results on semisimple algebras which we will be able to apply to group representations
later on.

Definition 2.22
Let A be an algebra. Then the opposite algebra Ao is the set A with the operation a · b := ba.

Lemma 2.23
Let A be an algebra. Then EndA ∼= Ao.

Lemma 2.24
If M = M1 ⊕M2 ⊕ · · · ⊕Mt then EndM is the matrix algebra represented below.

EndM1 Hom(M1,M2) · · · Hom(M1,Mt)
Hom(M2,M1) EndM2 · · · Hom(M2,Mt)

...
...

. . .
...

Hom(Mt,M1) Hom(Mt,M2) · · · EndMt


Theorem 2.25
If A is a simple algebra then A is a matrix algebra.

Sketch proof. Let S be a simple submodule of A and let M denote the sum of all submodules of
A isomorphic to S. Then EndM ∼= Mn(k) where n is the number of summands in M . One then
shows that A = M and the result follows by Lemma 2.23. ■

An important thing to note above is that the integer n is the number of times that S appears as
a submodule of A, and is also the dimension of S. Now, the following theorem is a fundamental
result regarding semisimple algebras. Note, the statement (and name!) of the below theorem will
vary dependent on how one defines an algebra. In our case, since we always assume that algebras
are finite-dimensional over k we have that our algebras are always Artinian and so Wedderburn’s
Theorem will suffice. If we do not require that our algebras be finite-dimensional then we would
instead require the Artin–Wedderburn Theorem.

Theorem 2.26 (Wedderburn)
Let A be a semisimple algebra. Then A is the direct sum of matrix algebras.
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Combined with the observation before the theorem, this yields the following corollary.

Corollary 2.27
Let A be a semisimple algebra and S be a simple A-module. Then the number of times that S
appears as a submodule of A as an A-module is equal to the dimension of S.

Obviously, not every module is semisimple, so let’s take a look at one that isn’t.

Example 2.28
Let G := C2 × C2 = ⟨x, y⟩ and let k = F2 (for this choice of G this is equivalent to working over
the algebraic closure but, mercifully, finite). Recall Definition 2.3: the group algebra kG is a
module over itself with the obvious action. It has dimension 4 (over k), and as we shall see is not
a semisimple kG-module. Let σ =

∑
g∈G g = 1 + x+ y + xy ∈ kG. Then kσ is a 1-dimensional

subspace of kG. If you’re bored, you can check that there are 15 3-dimensional subspaces of kG
of which 8 are complements to kσ. None of these 8 subspaces are submodules of kG, though, so
kG is not semisimple.

Now, since G is a group, we have a rather uninteresting homomorphism φ̂ : G → 1 onto the trivial
group. Extend this map linearly to kG and we get a kG-homomorphism φ : kG → k called the
augmentation map. Since φ is a homomorphism, kerφ = ∆(G) is a kG-submodule of kG. In this
case, since char k = 2, ∆(G) is the 3-dimensional subspace of kG spanned by σ, 1 + x and 1 + y.
Thus we see that kG/∆(G) is a 1-dimensional kG-module which, as before, does not appear
as a submodule of kG. One may also go further and check that ∆(G)/kσ is a 2-dimensional
semisimple module M (to check that it is semisimple it is sufficient to note that am = m for all
a ∈ kG, m ∈ M).

In the above example, we have explored the structure of a module but we lack the terms necessary
to describe what we have uncovered. We should probably fix that.

Definition 2.29
Let A be an algebra. The radical radA of A is the smallest submodule of A such that A/ radA
is semisimple.

Equivalently, radA is the intersection of all maximal submodules of A or the largest nilpotent
ideal of A. A noteworthy fact here is that if A is any algebra then A/ radA is a semisimple
algebra.

Definition 2.30
An algebra A is said to be local if A/ radA ∼= k.

Lemma 2.31
The algebra A is local if and only if every element of A is either nilpotent or invertible.

Theorem 2.32
An A-module M is indecomposable if and only if EndM is local.

Proposition 2.33
If M is an A-module then the following are equal.

• (radA)M .
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• The smallest submodule of M with semisimple quotient.

• The intersection of all maximal submodules of M .

We denote the submodule of M given above by radM , with the corresponding semisimple quotient
headM := M/ radM called the head of M .

We may then use this to define the radical series of M : Let rad0 M := M and then define
radi+1 M := rad(radiM) for each i. Since the module M is finitely generated, radrM = 0
for some integer r ≥ 0 which we call the radical length of M . We then have that for each i,
radiM/ radi+1 M is a semisimple module and we call these modules the radical factors of M .
This gives a description of M in terms of semisimple modules. The first radical factor, headM , is
sometimes also referred to as the top of M , and looking at radical factors of a module is sometimes
regarded as starting at the ‘top’ of a module and working ‘down.’ One may also start at the
‘bottom’ of a module and work up, as follows.

Let socM be the sum of all simple submodules of M , let soc0 M := 0 and define the socle series
of M by taking soci+1(M) to be the preimage in M of soc(M/ sociM). Then as before we have
that soci+1 M/ sociM is a semisimple module and for some r we have that socrM = M . We call
this r the socle length of M .

Given an A-module M , the radical and socle lengths of M are equal and called the Loewy length
of M .

Definition 2.34
Let M be an A-module. We define the heart of M to be the module H(M) := radM/(radM ∩
socM).

Example 2.35
Referring back to Example 2.28, we showed that soc kG = kσ, rad kG = ∆(G), head kG is
1-dimensional (thus simple) and H(M) = ∆(G)/kσ is a 2-dimensional semisimple module. In this
case the socle and radical series yield the same semisimple factors, though this need not always
be the case. Let k denote the simple kG-module with trivial action (so am = m for all a ∈ kG,
m ∈ k). Decomposing the module in this way yields the following picture of kG, with the head of
the module at the top and socle at the bottom.

k
k ⊕ k
k

We shall see later that it is no accident that all the simple modules here are trivial.

Proposition 2.36
If M is an A-module then the following are equivalent:

• M has a unique composition series.

• The radical factors of M are simple.

• The socle factors of M are simple.
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Any module satisfying the above equivalent properties is called uniserial.

We now finish off out background section on modules with a brief look at free modules and, most
importantly for us, projective modules. A free module is essentially just a direct sum of copies of
A as a module, but it is commonly formally defined via the following property.

Proposition 2.37
An A-module M is free if and only if there exists some subspace X ⊂ M such that any linear
transformation from X to any A-module N extends uniquely to a module homomorphism M → N .
The subspace X is called a basis for M .

While free modules are useful and important in general, our main motivation for defining them at
this point is as a means to define projective modules.

Theorem 2.38
Let M , N and P be A-modules. Then the following are equivalent:

• P is a direct summand of a free module.

• If φ : M ↠ P is a homomorphism of A-modules then kerφ is a direct summand of M .

• If φ : N ↠ M and ψ : P → M are homomorphisms of A-modules then there exists an
A-module homomorphism ρ : P → N such that φρ = ψ.

A module P satisfying any of the above properties is called projective. The third condition is
commonly expressed in the form of a commutative diagram, but we need a brief definition first.

Definition 2.39
Let Mi be A-modules (possibly zero) for i ∈ Z with maps φi : Mi → Mi+1. We say that the
sequence

· · · φi−2−−−→ Mi−1
φi−1−−−→ Mi

φi−→ Mi+1
φi+1−−−→ · · ·

is exact if for each i we have that kerφi = imφi−1.

The most common exact sequence we shall see is a short exact sequence, which is a sequence of
the form

0 → L
ι−→ M

π−→ N → 0

where the exactness means that ι has kernel zero and is thus an injection and π is a surjection as
the kernel of the (zero) map following it must be all of N . We say that such a sequence splits if
M ∼= L⊕N with ι and π corresponding to the natural inclusion and projection maps, respectively.

Now, the third condition of Theorem 2.38 is commonly expressed by saying that the following
diagram commutes (with exact bottom row).

P

N L 0

∃ρ
ψ

φ
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We will be seeing projective modules often throughout the course as they are very important
structures in representation theory.

Definition 2.40
Let M and N be modules. An extension of M by N is a module E and a short exact sequence

0 → N → E → M → 0.

Two such extensions (with modules E1 and E2 are said to be equivalent if there exists a map
φ : E1 → E2 (which is necessarily an isomorphism) such that the below diagram commutes.

0 N E1 M 0

0 N E2 M 0

Id φ Id

We say that an extension splits if it is equivalent to the extension

0 → N
ι−→ N ⊕M

π−→ M → 0

with ι and π the natural inclusion and projection maps, respectively. We denote the set of
extensions of M by N by Ext1

A(M,N).

There is also a generalisation of extensions called n-extensions in which we replace the module
E by a sequence of modules E1 → · · · → En, and in this framework an extension is simply a
1-extension. We will not be discussing n-extensions here, but ordinary extensions may arise in
future.

3 Group representations

We now define our main object of study in this course: a representation of a finite group G. Many
of the results stated from here on out will still hold in the case where G is infinite, but much of
our machinery relies on the fact that the group algebra (and thus any irreducible representation)
is a finite dimensional k–vector space.

Let G be a finite group and k an algebraically closed field of characteristic p ≥ 0. We have already
seen the group algebra kG in Definition 2.3. With our definition of representation, we shall now
see why it is important.

Definition 3.1
Given a finite group G and a field k, a representation of G is a homomorphism ρ : G → GL(V )
for some k–vector space V . This yields a group action of G on the vector space V and also gives
V the structure of a left kG-module. We say that a kG-module V is faithful if the only element
of G which acts trivially on V is the identity element.

Throughout this course, we will typically prefer to use the term irreducible over simple when
talking about kG-modules.
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Definition 3.2
Let V be a kG-module. The G–fixed space of V is V G := {v ∈ V | gv = v ∀g ∈ G}. Any
kG-module V with V G = V will be referred to as trivial, with the term the trivial module
specifically referring to the 1-dimensional trivial module typically denoted k.

Example 3.3
The group algebra kG is of course a kG-module equipped with the obvious action. This is often
called the regular representation of G and is a free kG-module. If G is not trivial then kG is not
simple, though it can be indecomposable.

Example 3.4
Let G be a finite group and k a field. The subspace of kG spanned by the element σ :=

∑
g∈G g

is a 1-dimensional (dimension here is taken over k) submodule of kG called the trivial kG-module.
We often denote this module by k.

Example 3.5
Let G be a finite group. H ≤ G and k a field. The permutation module of G on H is the vector
space k(G/H) spanned by the cosets of H in G with the obvious G-action. Many important
representations of groups may be obtained as sections (quotients of submodules) of permutation
modules.

We’ll see an important generalisation of permutation modules later on, but for now we lack the
machinery to properly talk about them.

Example 3.6
Let G = Sn and H = StabG(1) ∼= Sn−1 ≤ G. Then the permutation action of G on the cosets of
H is isomorphic to its natural action on n points. The normal way to regard the permutation
module on this subgroup then is to take a vector space V with basis {v1, . . . , vn} and take the
G-action on V to be gvi = vig and extend this linearly to the whole space. There is again an
obvious fixed space V G =

∑n
i=1 vi, and if p > n we have that W := V/V G is irreducible. We call

this module W the deleted permutation module.

Notation
For the remainder of this section, let G be a finite group and k be, unless otherwise stated, an
algebraically closed field of characteristic p ≥ 0. All kG-modules V are assumed to be finite-
dimensional over k. If a kG-module V is simple, we will typically instead say that V is irreducible,
and if it is not irreducible then it is reducible. Let IrrkG denote the set of irreducible kG-modules,
or IrrG if the field is clear.

We denote HomkG(V,W ) by HomG(V,W ) if it is necessary to specify the group but will often
drop the G entirely.

We start with Maschke’s Theorem, which handily splits the representation theory of a given finite
group into two cases.

Theorem 3.7 (Maschke’s Theorem)
Let G be a finite group and k an algebraically closed field of characteristic p ≥ 0. Then the group
algebra kG is semisimple if and only if p ∤ |G|.

Proof. Suppose that p | |G|. Then p > 0 is a prime. We have seen that the trivial module is a
1-dimensional submodule of kG and so, if kG were semisimple, we would have that kG is a sum
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of its simple submodules and in particular every composition factor of kG is a direct summand.
Now, by Corollary 2.27 we have dim HomG(k, kG) = 1 (this is the number of times k appears
as a submodule of kG) and thus we require that in any composition series of kG the module k
appears as a factor only once.

Take the homomorphism of G onto the trivial group and extend this map linearly to a map
kG↠ k. The kernel of this map ∆(G) is a submodule of kG called the augmentation ideal of kG
and is made up of all elements

∑
g∈G αgg such that

∑
g∈G αg = 0. Furthermore, kG/∆(G) ∼= k

since dim ∆(G) = |G| − 1 = dim kG− 1 and g · 1 = 1 + (g− 1) ∈ 1 + ∆(G) for all g ∈ G, meaning
that G has a fixed point on kG/∆(G) and, since the module is 1-dimensional, G thus fixes the
whole space.

Now, since p | |G|, we have that the obvious trivial submodule of G also lies in ∆(G). This
yields a composition series 0 ⊆ k ⊆ ∆(G) ⊆ kG with composition factors k, ∆(G)/k and k. As k
appears twice in this composition series we see that kG is not semisimple.

Now, suppose that p ∤ |G|. Then |G| is invertible in k. Let V be a kG-module and take U ⊆ V , it
is sufficient to show that V = U ⊕W for some submodule W ⊆ V . Let π : V ↠ U be a projection
map onto U (so π|U is the identity map). As vector spaces, we have that V = U ⊕ kerπ. If we
can show that π is a kG-homomorphism, then kerπ will be a submodule of V and thus we will
be done. It probably isn’t, but we can fix that.

Let
π′ := 1

|G|
∑
g∈G

πg.

It is clear that π′ is a linear map, and easy to check that π′(V ) ⊆ U and π′|U is the identity map.
Let h ∈ G, v ∈ V . Then

π′(hv) = 1
|G|

∑
g∈G

πghv = 1
|G|

∑
g∈G

hh−1g−1πghv = h
1

|G|
∑
x∈G

πxv = hπ′(v)

since hg runs over G as g does, as required. ■

So, if p ∤ |G| we have that kG is semisimple, and in fact this tells us that all kG-modules are
semisimple. This is the case in ordinary representation theory, and if the field k is algebraically
closed then this is more or less equivalent to working over C. When p | |G| things are vastly more
complicated. We have already seen an example of this in Example 2.28, which is relevant to the
next theorem.

Definition 3.8
We say that an element of G is p-regular if p ∤ |g|. The p-regular conjugacy classes of G are the
conjugacy classes of p-regular elements.

Theorem 3.9
The number of simple kG-modules is equal to the number of p-regular conjugacy classes of G.

The proof of the above theorem is not short, and may be found in [1, pp. 17–20].

Corollary 3.10
If char k = 0, then the number of irreducible kG-modules is equal to the number of conjugacy
classes of G.
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Corollary 3.11
If G is a p-group then there is only one simple kG-module. In particular, this module is the
(simple) trivial module.

So as we saw in Example 2.28, every composition factor of kG when G is a p-group is in fact a
trivial module. Of course, it also turned out that the socle and head of kG were both simple, this
is also a property unique to p-groups but we shall see why later. We now deal with two more
examples, one somewhat more complicated than the other.

Example 3.12
Let G = ⟨g⟩ be a cyclic group of order n = par for p ∤ r. Then the polynomial xr − 1 is separable
and thus has r distinct roots in k (This is why we take k to be algebraically closed — a smaller
field will suffice, but Fp might not). Fix one such root λ. Form a 1-dimensional k–vector space
where gi acts as λi. Since λn = (λr)pa = 1 this tells us that this is in fact a kG-module and
plainly simple with isomorphism type determined by the choice of λ. As the group G has r
p-regular conjugacy classes, we in fact see that all irreducible kG-modules are of this form.

Note that since k has characteristic p we have xn − 1 = (xr − 1)pa meaning that every nth root
of unity is in fact an rth root of unity over k.

Example 3.13
Let G = SL2(p) and let k have characteristic p. Then G has p conjugacy classes of p-regular
elements, and thus |IrrkG| = p. As we will be revisiting this example, we should construct the p
irreducible kG-modules.

Let V be the natural kG-module, regarded as the 2-dimensional space of column vectors with
X =

(
1
0

)
and Y =

(
0
1

)
. If

g =
(
a b
c d

)
then gX = aX + cY and gY = bX + dY . Let k[X,Y ] be the polynomial ring in X and Y and
note that the action just described can be used to define an action of G on the entire space. Let
Vn denote the subspace of k[X,Y ] of homogeneous polynomials of degree n− 1. Then Vn is a
kG-module with V ∼= V2 and V1 ∼= k. A basis for each Vn is {Xn−1, Xn−2Y, . . . ,XY n−2, Y n−1},
yielding dimVn = n.

We aim to show that IrrkG = {V1, V2, . . . , Vp}. As there are p modules here, it is sufficient to
show that they are all simple. Since it is 1-dimensional, it is clear that V1 is simple. Now let
1 ≤ n < p and let

g =
(

1 0
1 1

)
, h =

(
1 1
0 1

)
.

For 0 ≤ i ≤ n, let Wi+1 be the i+ 1-dimensional vector subspace of Vn+1 spanned by the basis
{XiY n−i, Xi−1Y n−i+1, . . . , XY n−1, Y n} and set W0 := 0. This gives us a chain of subspaces

0 = W0 ⊊W1 ⊊W2 ⊊ · · · ⊊Wn ⊊Wn+1 = Vn+1.

We now prove the following for 0 < i ≤ n by induction:

i) Wi is a k⟨g⟩-submodule of Vn+1.
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ii) Wi/Wi−1 is a trivial k⟨g⟩-module.

iii) Each element of Wi \Wi−1 generates Wi as a k⟨g⟩-module.

Proof. For the case i = 1, note that gX = X + Y and gY = Y , thus gY n = Y n and so g acts
trivially on W1.

Now suppose that the claim holds for i. Taking the binomial expansion of (X + Y )i, we have

gXiY n−i = (X + Y )iY n−i = XiY n−i +
(

i
1

)
Xi−1Y n−i+1 + u

for u ∈ Wi−1. This shows that Wi+1 is a k⟨g⟩-submodule of Vn+1 since clearly gXiY n−i ∈ Wi+1,
any element of Wi+1 may be written in the form aXiY n−i + x for x ∈ Wi and Wi is also
a k⟨g⟩-submodule of Vn+1 by assumption. Since Wi+1/Wi is 1-dimensional and we see that
gXiY n−i − XiY n−i ∈ Wi we also have that Wi+1/Wi is a trivial k⟨g⟩-module. Finally, since

i < p,
(

i
1

)
≠ 0 so that (g − 1)XiY n−i ∈ Wi \Wi−1. Take v ∈ Wi+1 \Wi, then as above we

may express v as aXiY n−i + x for x ∈ Wi and a ̸= 0 so that

(g − 1)v = a(g − 1)XiY n−i + (g − 1)x.

Now, (g− 1)x ∈ Wi−1 as Wi/Wi−1 is a trivial module and so (g− 1)v ∈ Wi \Wi−1. By induction,
the k⟨g⟩-module generated by v therefore contains Wi since it contains an element of Wi \Wi−1
and clearly also contains v, thus is the whole of Wi+1 as required. ■

In particular, Xn generates Vn+1 as a k⟨g⟩-module. Now, |g| = p and so ⟨g⟩ is a p-group and thus
the only irreducible k⟨g⟩-module is the trivial module by Corollary 3.11. Thus socVn+1 = V

⟨g⟩
n+1

is spanned by Y n. An identical proof then shows that Y n generates Vn+1 as a k⟨h⟩-module and,
as a k⟨h⟩-module socVn+1 = V

⟨h⟩
n+1 is spanned by Xn.

Now, suppose that 0 ̸= W ≤ Vn+1. Then clearly W is a k⟨g⟩-submodule of Vn+1 and in
particular must contain some irreducible k⟨g⟩-submodule of Vn+1. But as a k⟨g⟩-module socVn+1
is irreducible and spanned by Y n, thus W contains Y n. But then W must contain the k⟨h⟩-
submodule of Vn+1 generated by Y n, which is Vn+1. So Vn+1 is irreducible, as required.

The group SL2(p) is an example we will return to multiple times throughout the course. For now
though, we need to continue building up machinery, starting with Clifford’s Theorem.

Definition 3.14
Let V be a kG-module and H ≤ G. We denote the restriction of V to H by VH . This is equivalent
to restricting to the subalgebra kH of kG.

Theorem 3.15 (Clifford)
If V is a semisimple kG-module and N ⊴ G then VN is semisimple.

Proof. It suffices to show this in the case where V is irreducible. Suppose that W ≤ VN . Then
for any g ∈ G we have that gW ≤ VN as n(gW ) = gg−1ngW = gngW = gW for any n ∈ N .
Now let U ≤ VN be an irreducible kN -submodule. Then

∑
g∈G gU is a semisimple submodule of

VN , but this is clearly also a kG-module and thus is the entirety of VN as required. ■
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Clifford’s theorem is a very important theorem in the representation theory of groups. So much so
that the study of representations restricted to normal subgroups is typically referred to as ‘Clifford
Theory.’ This is typically most useful when looking at soluble groups due to the abundance of
normal subgroups.

We now return to our previous discussion of projective modules and specialise it a little further
to the case of kG-modules.

While the group algebra kG need not be semisimple, it is usually decomposable. Indeed, the
module kG is a free module and so its indecomposable direct summands are precisely the projective
indecomposable kG-modules. We will refer to these modules as the PIMs for kG (or simply for G
if the field is clear). This also yields the following corollary to Maschke’s Theorem (Theorem 3.7):
Corollary 3.16
Let G be a finite group and k be a field whose characteristic does not divide |G|. Then every
kG-module is projective.

Theorem 3.17
There is a one-to-one correspondence between isomorphism classes of projective indecomposable
kG-modules and isomorphism classes of irreducible kG-modules given by P ↔ P/ radP .

There are a number of important consequences of this theorem. First, we see that headP is
irreducible and that each irreducible module is the head of some projective indecomposable module
and second, if P and Q are both PIMs with isomorphic heads then P ∼= Q. This also means that
radP is the unique maximal submodule of P . With this in mind, we have the following.
Definition 3.18
Let V ∈ IrrkG. The unique projective indecomposable module with V as a quotient is called the
projective cover of V and we denote this cover by P(V ).

Combining Theorem 3.17 with Corollary 2.27, we obtain the following.
Corollary 3.19
In a decomposition of the free module kG into a direct sum of indecomposable submodules, each
isomorphism type of indecomposable projective module occurs as many times as the dimension of
the corresponding irreducible module.

So while we need not have that the group ring kG is semisimple, we do have a decomposition

kG =
⊕

V ∈Irrk G

P(V )⊕ dimV .

Lemma 3.20
Let V be a kG-module with V/ radV irreducible and isomorphic to P/ radP for some projective
indecomposable module P . Then there exists a kG-module homomorphism φ : P ↠ V .

Theorem 3.21
If P is a projective kG-module and H ≤ G then PH is a projective kH-module.

Proof. It is easy to check that (kG)H ∼= (kH)⊕[G:H] and so in particular we have that kG is free
as a kH-module. Thus any projective kG-module, being a direct summand of a free kG-module,
restricts to a summand of a free kH-module and is thus projective for H. ■
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Corollary 3.22
If P ∈ SylpG has order pa then every projective kG-module has dimension divisible by pa.

Proof. By Corollaries 3.11 and 3.19, kP is indecomposable. Thus every projective kP -module is
free and so in particular has dimension divisible by dim kP = |P | = pa. ■

Lemma 3.23
If R ∈ SylpG and R ⊴ G with M a kG-module then radM = radMR. Moreover if R = ⟨x⟩ is
cyclic then radM = (1 − x)M .

Before we introduce any more concepts, we should use some of the ones we have to flesh out some
of the previous examples. We first return to the case where G is cyclic.

Example 3.24
Let G = ⟨g⟩ be cyclic of order n and let V be a kG-module afforded by the representation
φ : G → GL(V ). Then the eigenvalues of φ(g) are nth roots of unity and in fact V = V1 ⊕ . . .⊕Vs
where each Vi is a Jordan block, that is, φ(g) acts on Vi as the matrix

λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
0 0 λ 1 · · · 0
...

...
...

... . . . ...
0 0 0 0 · · · λ


for some eigenvalue λ of φ(g). Now, there is only one (one-dimensional) subspace of eigenvectors
for φ(g) in Vi, indicated by the bottom row of the matrix, and so Vi is indecomposable. As such,
each indecomposable kG-module is a Jordan block for some nth root of unity λ. Assume now
that V = Vi is indecomposable with basis v1, . . . , vm corresponding to the above matrix. Let
n = par as before with p ∤ r, so that λ is an rth root of unity as in Example 3.12. Let λ1, . . . , λr
denote the rth roots of unity. Then

φ(g)r − IdV = (φ(g) − λ1 IdV )(φ(g) − λ2 IdV ) · · · (φ(g) − λr IdV )

and so φ(g)r − IdV = (φ(g) − λ IdV )S for some nonsingular linear transformation S of V which
commutes with φ(g). Further,

0 = φ(g)n − IdV = (φ(g)r − IdV )p
a

= (φ(g) − λ IdV )p
a

Sp
a

and so (φ(g)−λ IdV )pa = 0. But (φ(g)−λ IdV )vi = vi+1 for each i < m with (φ(g)−λ IdV )vm = 0
so that m ≤ pa. Thus there are n possible structures for V since there are r possible choices of a
root of unity and m = dimV is at most pa.

In this setup, the irreducible modules seen before are simply the 1-dimensional Jordan blocks.
It is easy to see that the element gr − 1 ∈ kG is nilpotent and thus lies in rad kG since kG is
a commutative algebra. Now, (gr − 1)V = radV is the subspace spanned by v2, . . . , vm and so
radV is the Jordan block of dimension dimV − 1 with eigenvalue λ. One may iterate this to find
that radi V shrinks by one dimension at a time, so that all radical layers have dimension one and
in particular are irreducible. In fact, all radical layers are the same irreducible module: the one
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corresponding to λ. Let Vλ denote this irreducible module. Then each indecomposable module
for kG is of the form

Vλ
Vλ
Vλ
...
Vλ

for some rth root of unity λ, where the composition length of such a module is at most pa. This
shows that every indecomposable module for a cyclic group G is in fact uniserial with composition
length at most |G|p (the p-part of |G|). Further, the indecomposable modules with composition
length pa are in fact the PIMs for kG.

The next example is a more complicated version of one we have seen before. In this next case,
the indecomposable modules for G very much do not need to be uniserial.
Example 3.25
Let G := Cp × Cp = ⟨x, y⟩. For each n ∈ N, let Vn be a 2n-dimensional k–vector space with
basis v1, . . . , vn, w1, . . . , wn. Let X be the linear transformation of Vn such that Xvi = wi and
Xwi = 0 for each i. Further, let Y be the linear transformation such that Y vi = wi+1 for each
i < n and Y vn = Y wj = 0 for each j. We may represent the actions of X and Y on V = Vn by
the below diagram.

v1 v1 · · · vn

w1 w2 · · · wn

X
Y

X
Y Y

X

So we see that X2 = Y 2 = XY = Y X = 0, but (IdV +X)p = (IdV +Y )p = IdV as k has
characteristic p. We thus make V into a kG-module via the representation φ : x 7→ IdV +X,
y 7→ IdV +Y . Thus φ(x) and φ(y) respectively have the following matrices(

In 0
In In

) (
In 0
Nn In

)
where In denotes the n× n identity matrix and N = Nn is the n× n matrix whose only nonzero
entries are 1s just below the diagonal. Then EndV is simply the centraliser in M2n(k) of φ(x)
and φ(y). It is then an exercise in linear algebra to check that any such matrix is of the form(

A 0
C A

)
where AN = NA, with this latter condition being equivalent to A being a lower-triangular matrix
with each diagonal constant (i.e. every entry on the diagonal is some fixed λ1, every entry just
below the diagonal is some fixed λ2 and so on). Thus the subspace of EndV of matrices with zero
on the diagonal is a nilpotent ideal of EndV of codimension one. As such, EndV/ rad EndV has
dimension one and in particular EndV is local, thus by Theorem 2.32, V is indecomposable (note:
this result was added in after the first lecture as it was needed here!). We have thus constructed
an infinite family of indecomposable modules for G. Note that by Lemma 3.20 we have that any
uniserial module is a quotient of some projective indecomposable kG-module and so in particular
there are finitely many uniserial kG-modules. Thus without even looking closer at the structure
of these modules we can tell that not every kG-module here is uniserial.
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We now continue to build up machinery to allow us to look at the structure of projective modules.
We now know that PIMs have simple heads and that any kG-module with irreducible head is in
fact a quotient of the projective cover of that head. We would also like to do something similar
by looking at submodules rather than quotients.

Recall from linear algebra that given a vector space V over k, the dual space V ∗ of V is the space
Hom(V, k). If V is a kG-module, we may impose an action of G onto this space.

Definition 3.26
Let V be a kG-module. Then the dual of V is the kG-module V ∗ := Hom(V, k). This is the dual
vector space of V with the action gφ : v 7→ φ(g−1v).

Note that in the case of group representations, the dual V ∗ of a kG-module V is not the dual
as a kG-module (this would be HomkG(V, kG)), but the vector space dual with a G-action. All
the typical correspondences between a vector space and its dual then carry over to the case of
kG-modules, so V ∗∗ ∼= V and submodules of V correspond to quotients of V ∗ in the natural way.
In this sense, taking the dual of a module is somehow ‘turning it on its head.’ Taking duals also
distributes nicely over direct sums and vector space tensor products. In this vein, we have the
following.

Lemma 3.27
V is irreducible if and only if V ∗ is irreducible.

Thus we also see that duality acts as a permutation (an involution, in fact) on IrrkG, and due to
the friendly properties of duality we thus also see that the dual of a semisimple module remains
semisimple. Now, since we still wish to look at projective modules, it is easiest to start with free
ones. Since clearly kG∗ ∼= kG, we have

Lemma 3.28
Let V be a free module. Then V ∗ is free.

An immediate consequence of this is that the dual of a projective module is itself projective. Note
for modules over arbitrary algebras this need not be the case.

Now, taking the dual of Theorem 2.38, we obtain the next proposition. In this case, duality
typically means that we take any arrows that appear in any commutative diagrams and simply
flip them around.

Proposition 3.29
Let U , V , I be kG-modules. Then the following are equivalent:

• I is a direct summand of a free module.

• If φ : I ↪→ U then φ(I) is a direct summand of U .

• If ψ : U ↪→ V and φ : U → I then there exists a homomorphism ρ : V → I such that φ = ρψ.

As in the projective case, this last condition may be expressed by saying that the above diagram,
with exact bottom row, commutes.
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I

V U 0

∃ρ
φ

ψ

Modules I satisfying any of the above properties are called injective. When dealing with kG-
modules, however, we have the following.

Theorem 3.30
A kG-module V is projective if and only if it is injective.

This above theorem is due to the fact that kG is a quasi-Frobenius algebra (or ring). A discussion
of this may be found starting at [7, Definition 58.5], in particular the above theorem follows
directly from [7, Theorem 58.14].

The following result now follows from Theorem 3.17 by duality since (socP )∗ ∼= headP ∗ is
irreducible.

Corollary 3.31
If P is a projective indecomposable kG-module then socP is irreducible.

Finally, we have this key result on the structure of the PIMs for kG-modules.

Theorem 3.32
Let P be a projective indecomposable kG-module. Then headP ∼= socP .

So with this, we now know that each PIM has irreducible head and socle, and that in fact these
irreducible modules are isomorphic. So for a given V ∈ IrrkG, the projective cover P(V ) looks
like

V
H(P(V ))

V
.

In some cases, we can say more about the structure of the heart of projective indecomposable
modules but in general they can be an incredibly complicated mess of extensions of many different
irreducible modules that are practically impossible to untangle. In particular, no friendly picture
of such a module is likely to exist. We shall however see some of the friendlier examples later in
the course.

The proof of this theorem will not be included in lectures, but we shall go through it here for
completeness as this is an important result and the proof isn’t too long. We do, however, need to
introduce a little bit of machinery specifically for this proof.

Let ( , ) be the symmetric k-bilinear form on kG such that (g, g−1) = 1 and (g, h) = 0 for all
other choices of h. Here symmetric means that (g, h) = (h, g) and bilinear means that for any
λ ∈ k we have that (λg, h) = (g, λh) = λ(g, h). The form is also nondegenerate, meaning that
there does not exist nonzero x ∈ kG such that (x, y) = 0 for all y ∈ kG. We can also see that
(xy, z) = (x, yz) for all x, y, z ∈ kG.
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Proof of Theorem 3.32. Let P be a projective indecomposable module. Then headP ∼= V for
some V ∈ IrrkG. Suppose that socP ≇ V and write kG = Q ⊕ R for Q = P⊕ dimV so that
R contains no summands isomorphic to P . Then socQ ∼= (socP )⊕ dimV and so in particular
HomG(V,Q) = 0. Then kG/R also has no submodules isomorphic to V . Let I be the sum of
all submodules of kG isomorphic to V and note that 0 ̸= I ≤ R. Now, the socle of P(V ∗)∗

must be isomorphic to V and P(V ∗)∗ must be a summand of R. Further, the submodule I is
also an ideal of kG: as it is a submodule, it is a left ideal, and by Schur’s Lemma (Lemma 2.9)
φ(I) ⊆ I for any φ ∈ End kG we have that I is a right ideal (since End kG ∼= (kG)o). Let
J := {φ ∈ End kG | imφ ⊆ I}, then J ⊴ End kG.

Let π : kG↠ Q be the natural projection (so kerπ = R and take φ ∈ J . Now, φ(kG) ≤ I ≤ R
and so πφ = 0 and we claim that φπ = φ. As π is the identity on Q these maps clearly agree on
Q and πR = 0 so φπ vanishes on R. Suppose that φ(R) ̸= 0. Then there exists X ≤ R such that
R/X ∼= S, and in fact there exists an indecomposable summand of R with this property. But
such a summand must then be projective, contradicting our definition of R. So φ(R) = 0 and
φ = φπ − πφ = φπ.

Now, we may suppose that φ ̸= 0 and let α ∈ End kG. Thus φα ∈ J and so φα = φαπ − πφα.
But endomorphisms of kG are simply right multiplications, so let a, b, c ∈ kG such that α = ρa,
φ = ρb and π = ρc (where ρx(y) := yx) and we actually have that ab = cab− abc. But then

(a, b) = (ab, 1)
= (cab, 1) − (abc, 1)
= (c, ab) − (ab, c)
= 0

but this must hold for all a ∈ kG. Since our form is nondegenerate, this forms b = 0 and thus
φ = 0. This contradiction completes the proof. ■

Another common tool from linear algebra which we shall be co-opting here is that of tensor
products. Much like the dual space, we may equip the tensor product V ⊗k W with a G-action
which happens to work nicely with all of our constructions.

Definition 3.33
Let V and W be kG-modules. Then the tensor product V ⊗W of V and W is the kG-module
with the underlying vector space V ⊗k W under the G-action g(v ⊗ w) = gv ⊗ gw. We also
analogously define the n-fold tensor product V ⊗n :=

⊗n
i=1 V .

It is very important once again to note that the tensor product of kG-modules is in fact just a
tensor product taken over k with a G-action, and not the module V ⊗kGW . This tensor product
construction is going to come in particularly useful when we wish to describe the projective
modules for SL2(p).

Recall that a kG-module is faithful if the only element of G which fixes the whole space is the
identity. Also, for kG-modules V and W we use the notation V | W to mean there exists some
submodule U of W such that W ∼= U ⊕ V , i.e. V is isomorphic to a direct summand of W .

Theorem 3.34
Let V be a faithful kG-module and P a projective indecomposable kG-module. Then P | V ⊗n for
some n ≥ 1.
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This means that given a faithful kG-module, we can actually find every projective indecomposable
kG-module as summands of its tensor powers. This can be a very powerful result provided it is
actually feasible to deconstruct these tensor products, which can in general be very difficult. This
next result also tells us that it is typically sufficient to only look at tensors of simple modules.

Proposition 3.35
If G has no nontrivial normal p-subgroups then

⊕
V ∈Irrk G

V is a faithful kG-module.

Note that if G does have a nontrivial normal p-subgroup Q then this subgroup lies in the kernel of
every irreducible kG-module and thus also lies in the kernel of the above direct sum. For example,
the groups SL2(q) for q an odd prime power all have a centre of order 2 and so, in particular, if k
has characteristic 2 then SL2(q) has no faithful irreducible kG-modules.

This next result is an example of Tensor-hom adjunction, a property that one might see if studying
homological algebra. In that setting, this is a statement about the functors −⊗V and Hom(V,−).
We will definitely not be looking any further into that here, however.

Lemma 3.36
Let U , V and W be kG-modules. Then HomG(U ⊗ V,W ) ∼= HomG(U, V ∗ ⊗W ).

Finally, we have this useful result regarding projective modules. To prove the following result, it
is sufficient to show that V ⊗ kG is free for any kG-module V . One can also prove this result
much easier using some future results, but we wish to make use of this lemma here.

Lemma 3.37
Let V be a kG-module and P a projective kG-module. Then V ⊗ P is projective.

We now conclude this section by returning to SL2(p) and determining the structure of its
projective indecomposable modules. Recall the construction of the irreducible k SL2(p)-modules
from Example 3.13.

Example 3.38
Set G := SL2(p) and let V1, . . . , Vp denote the irreducible kG-modules as before. We shall see
later that if a kG-module V is projective upon restriction to a subgroup of G containing a Sylow
p-subgroup, then V is projective as a kG-module. It is, however, far too early for that, so you
shall simply have to believe it for now. We shall use this result to show, first, that Vp is projective.

Let Q ∈ SylpG. Then Q is cyclic of order p and we may suppose that Q consists of the upper
unitriangular matrices in G. It was already demonstrated in Example 3.13 that (Vp)Q is uniserial,
and in fact since dimVp = p we have that Vp is a projective indecomposable module for Q (indeed,
it is kQ itself).

Now, let Pi := P(Vi). We have shown that Pp ∼= Vp. To go further, we will investigate particular
tensor products of irreducible modules. In particular, we show the following.

Lemma 3.39
Suppose that 2 ≤ n < p. Then V2 ⊗ Vn ∼= Vn−1 ⊕ Vn+1.

Proof. Recall that Vn is the space of homogeneous polynomials in X and Y of degree n− 1. As
such, we have an obvious surjective homomorphism ψ : V2 ⊗ Vn → Vn+1 given by f ⊗ g 7→ fg.
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We first prove that the kernel of this map is isomorphic to Vn−1 and, checking dimensions, it is
sufficient to provide an embedding of Vn−1 into this kernel. Define a linear map φ : Vn−1 → V2⊗Vn
by φ(f) := X ⊗ Y f − Y ⊗Xf , so it is plain to see that φ : Vn−1 → kerψ. Now, if s is the matrix(
a b
c d

)
∈ G then of course ad− bc = 1 and we have

s(φ(f)) = s(X ⊗ Y f − Y ⊗Xf)
= s(X) ⊗ s(Y )s(f) − s(Y ) ⊗ s(X)s(f)
= (aX + cY ) ⊗ (bX + dY )s(f) − (bX + dY ) ⊗ (aX + cY )s(f)
= (ad− bc)(X ⊗ Y s(f)) − (ad− bc)(Y ⊗Xs(f))
= φ(s(f))

so φ is a homomorphism. The elements XiY n−2−i for 0 ≤ i ≤ n− 2 form a basis for Vn−1 and

φ(XiY n−2−i) = X ⊗XiY n−1−i − Y ⊗Xi+1Y n−2−i.

The 2(n− 1) tensors whose differences yield the n− 1 images above (e.g. in the above case the
tensors in question would be X⊗XiY n−1−i and Y ⊗Xi+1Y n−2−i) then form subsets of bases for
X ⊗ Vn and Y ⊗ Vn, respectively, and thus are linearly independent. In particular, φ is injective.
Thus kerψ ∼= Vn−1

It now remains only to show that V2 ⊗ Vn has a submodule isomorphic to Vn+1. We prove this
by induction, but backwards. Let n = p − 1. Then V2 ⊗ Vn has the projective module Vp as
a homomorphic image and thus as a direct summand. Now let n + 1 < p and suppose that
V2 ⊗ Vn+1 is as claimed in the lemma. Since Vn+1 is irreducible, it is sufficient to show that
HomG(Vn+1, V2 ⊗ Vn) ̸= 0 as any nonzero homomorphism will be an embedding. Now, V ∗

2 is a
2-dimensional irreducible kG-module and thus isomorphic to V2 itself. Further, by Lemma 3.36
we have

HomG(Vn+1, V2 ⊗ Vn) ∼= HomG(Vn+1 ⊗ V ∗
2 , Vn)

∼= HomG(Vn+1 ⊗ V2, Vn)
∼= HomG(Vn ⊕ Vn+2, Vn)

by induction, and this last Hom is clearly nonzero. ■

Now, the module V2 ⊗ Vp is projective by Lemma 3.37 and we may replicate the first part of the
proof of the above lemma. Thus V2 ⊗ Vp has a submodule isomorphic to Vp−1 and the quotient
by this submodule is isomorphic to Vp+1 (note this module was defined in Example 3.13 but
is reducible). Thus V2 ⊗ Vp has a summand isomorphic to Pp−1. As dimVp−1 = p − 1 is not
divisible by p, Vp−1 is not projective by Corollary 3.22. As Vp−1 is the unique simple submodule
of Pp−1 we have a chain Vp−1 = socPp−1 ≤ radPp−1 ≤ Pp−1 and so dimPp−1 ≥ 2(p− 1). Since
p | dimPp−1 again by Corollary 3.22 and dim(V2 ⊗ Vp) = 2p we thus have that V2 ⊗ Vp ∼= Pp−1
provided p > 2. (Note if p = 2, Pp−1 = P1 and dim kG = 6 = dimP1 +2 dimP2 so dimP1 = 2 and
thus P1 is the uniserial module given by the unique non-split extension 0 → k → P1 → k → 0.)
Returning to the case p > 2, we have that V2 ⊗ Vp ∼= Pp−1 and so the socle and head are both
isomorphic to Vp−1 and we have that dim H(Pp−1) = 2. We claim that H(Pp−1) ∼= V2. Since
V2 ⊗ Vp/Vp−1 ∼= Vp+1 this is equivalent to showing that Vp+1 has a submodule isomorphic to V2.
The map σ : k[X,Y ] → k[X,Y ] with σ(X) = Xp and σ(Y ) = Y p is an injective endomorphism of
k[X,Y ] which maps V2 into Vp+1, thus we are done.
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Next, we look at Pp−2 by studying M := V2 ⊗ Pp−1. As one of the tensor factors is projective,
this module is projective and using the structure of Pp−1 described above we find a series of
submodules with successive quotients isomorphic to V2 ⊗ Vp−1, V2 ⊗ V2 and V2 ⊗ Vp−1 or, using
Lemma 3.39, Vp−2 ⊕ Vp, V1 ⊕ V3, Vp−2 ⊕ Vp. Since Vp is projective and Vp−2 lies in headM , we
have that M has a summand isomorphic to Pp−2 ⊕V ⊕2

p (and, if p = 3, P1 ⊕V ⊕3
3 ). As before, Pp−2

has two composition factors isomorphic to Vp−2 and has dimension divisible by p and its only
other possible composition factors are V1 or V3 (just V1 when p = 3). We therefore require that
H(Pp−2) has composition factors V1 and V3 (again, if p = 3 there is only V1, we will investigate
this later but the structure will be as expected). We claim that in fact H(Pp−2) ∼= V1 ⊕ V3. Were
the heart not semisimple it would need to be uniserial and in particular would not be self-dual.
However, since Vp−2 is self-dual, so is Pp−2 and it follows that H(Pp−2) is thus also self-dual.

We determine the structure of Pn for 2 < n < p− 1 by induction (but backwards, again, taking
the above as our base case). Suppose that V2 ⊗ Pn has a series of submodules with successive
quotients V2 ⊗Vn, V2 ⊗ (Vp+1−n⊕Vp−1−n) and V2 ⊗Vn, reducing via Lemma 3.39 to Vn−1 ⊕Vn+1,
Vp+2−n ⊕ Vp−n ⊕ Vp−n ⊕ Vp−n−2 and Vn−1 ⊕ Vn+1 (where if the subscript is zero we delete the
module). Since V2 ⊗ Pn is projective with a quotient isomorphic to Vn+1 ⊕ Vn−1 we have that
V2 ⊗ Pn ∼= Pn+1 ⊕U where U is projective with quotient Vn−1 and has composition factors Vn−1,
Vp+2−n, Vp−n and Vn−1. Proceeding as in the above paragraph we see that U ∼= Pn−1 and its
structure is again as claimed.

Finally, we deal with P1 by looking at V2 ⊗ P2. Again we obtain V2 ⊗ P2 ∼= P3 ⊗ Vp ⊕ U for
some projective kG-module U with head V1 and composition factors V1, Vp−2, V1. Clearly in this
case U ∼= P1 is uniserial with these composition factors. We have thus shown that the projective
indecomposable SL2(p)-modules are as below for 1 < n < p− 1. Note that when p = 2 we have
p− 2 = 0 and thus we simply delete Vp−2 from the picture, yielding P1 of dimension two.

P1 ∼
V1
Vp−2
V1

, Pn ∼
Vn

Vp−1−n ⊕ Vp+1−n
Vn

, Pp−1 ∼
Vp−1
V2
Vp−1

, Pp ∼= Vp.

4 Modular representations

In this section, we begin looking at certain structures which are typically trivial or otherwise not
noteworthy in the case where p ∤ |G|. We will begin by introducing induced modules (which are
also very useful in coprime characteristics) and use these along with other structures to allow us
to use information about p-local subgroups (normalisers of p-subgroups) of G to tell us about
the group’s representation theory. This general idea is fundamental to modular representation
theory, and various questions relating p-subgroups to the representation theory of G are some of
the largest open problems in this area.

We saw before a characterisation of free modules using a linear subspace of the module as a basis.
A linear subspace of a kG-module can also be regarded as a k1-subspace for the subgroup 1 ≤ G.
We can generalise this notion of free to depend on subgroups of G.

Definition 4.1
For a subgroup H ≤ G, we say that a kG-module V is relatively H-free if there exists a kH-
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submodule X ≤ V such that any kH-homomorphism of X to any kG-module W extends uniquely
to a kG-homomorphism of V to W .

Compare the above definition with Proposition 2.37 and see that if we set H = 1 then we recover
the usual definition of freeness. We say that V is relatively H-free with respect to X (and we
may abuse this notation by using X to refer to an isomorphism class of kH-modules rather than
a specific fixed submodule).

Lemma 4.2
Let V , W be relatively H-free kG-modules with respect to the kH-submodules X and Y , respectively,
with X ∼= Y . Then V ∼= W .

Proposition 4.3
Suppose that X is a kH-module for H ≤ G. Then there exists a kG-module which is relatively
H-free with respect to X.

The module satisfying the above proposition that any proof typically constructs is called the
induced module of X from H to G. A typical proof of the above proposition is given on [1, p. 55]
in which the induced module is constructed. We will be using a different definition for these
modules, coming after the next corollary.

Corollary 4.4
Let V be a kG-module generated by the kH-submodule X for H ≤ G. Then V is relatively H-free
with respect to X is and only if dimV = [G : H] dimX.

Definition 4.5
Let H ≤ G and let U be a kH-module. Then the induced module of U from H to G is the
kG-module IndGH U := kG⊗kH U .

Note that the tensor product above is specifically the tensor over kH , not the tensor over k as we
have seen before. One way of regarding this is to take the typical vector space tensor product
kG⊗ U and quotient out by the subspace spanned by elements of the form ah⊗ v − a⊗ hv for
a ∈ kG, h ∈ H and v ∈ U . We equip this space with the structure of a kG-module by setting
g(a⊗ v) := (ga) ⊗ v (note this is not the usual action on the space kg ⊗ U). In Alperin’s book,
the induced module is denoted UG, but that would clash with our definition of a fixed space so
we use the clearer (but unfortunately more clunky) notation seen above.

Lemma 4.6
Let H ≤ G and V be a kH-module. Then IndGH V is relatively H-free with respect to V and is
also equal (as vector spaces) to the direct sum

IndGH V =
∑

s∈G/H

s⊗ V

where dim(s⊗ V ) = dimV .

We now provide a selection of properties of induced modules, the proofs for all of these may be
found in [1, §8] but are mostly not provided here.

Lemma 4.7
Let V , V1 and V2 be kH-modules for H ≤ G and let W be a kG-module. Then
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i) If V is free (resp. projective) then IndGH V is free (resp. projective).

ii) IndGH(V1 ⊕ V2) ∼= IndGH V1 ⊕ IndGH V2.

iii) IndGH(V ∗) ∼= (IndGH V )∗.

iv) If U is a kL-module for L ≤ H then IndGH(IndHL U) ∼= IndGL U .

v) W ⊗ IndGH V ∼= IndGH(WH ⊗ V ).

The first two parts of the next lemma are typically called Frobenius Reciprocity when p ∤ |G| and
Frobenius–Nakayama Reciprocity otherwise and is an incredibly useful result.

Lemma 4.8
Recall the notation from above. Then

i) HomG(IndGH V,W ) ∼= HomH(V,WH).

ii) HomG(W, IndGH V ) ∼= HomH(WH , V ).

iii) If γ ∈ HomH(WH , V ) then the map sending w ∈ W to
∑
s∈G/H s ⊗ γ(s−1w) lies in

HomG(U, IndGH V ) and this yields an isomorphism of HomH(WH , V ) onto HomG(W, IndGH V ).

iv) If α ∈ HomH(V1, V2) then there exists a unique homomorphism, denoted by IndGH α, in
HomG(IndGH V1, IndGH V2) extending α.

v) If the sequence
0 → V1

α−→ V
β−→ V2 → 0

is exact then so is

0 → IndGH V1
IndG

H α−−−−→ IndGH V
IndG

H β−−−−→ IndGH V2 → 0

and one splits if and only if the other does.

Recall that we say a short exact sequence is split if the middle term is isomorphic to the direct
sum of the other two terms, and the maps correspond to the natural injection and projection
maps, respectively.

Proof. We prove only the first two statements. The first statement follows from the definition of
relative freeness: Each α ∈ HomH(V,WH) extends uniquely to α̂ ∈ HomG(IndGH V,W ) and such
a map is surjective since restricting a map and re-extending it yields the same homomorphism.
To obtain the second statement:

HomG(W, IndGH V ) ∼= HomG((IndGH V )∗,W ∗)
∼= HomG(IndGH(V ∗),W ∗)
∼= HomH(V ∗, (W ∗)H)
∼= HomH(WH , V )

using part i), the previous lemma and the fact that Hom(W,V ) ∼= Hom(V ∗,W ∗). ■
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Next up we have Mackey’s Theorem. We’ll call it a lemma here, but it is a very useful result if we
happen to know well the structure of the modules for a proper subgroup of G and the action of G
on our subgroup H. First, though, if V is a kH-module then s⊗ V is a summand of IndGH V and
may be regarded as a module for Hs−1 via the action shs−1(s⊗ v) = (sh) ⊗ v = s⊗ hv defined
by the action of H on V . In general, we let s(V ) denote a k(Hs−1)-module obtained as s⊗ V for
some kH-module V . This phenomenon is occasionally referred to as ‘transport of structure.’

Lemma 4.9 (Mackey’s Theorem)
Let L, H ≤ G. Then

(IndGH V )L ∼=
⊕

s∈L\G/H

IndL
L∩Hs−1 s(V ).

A notable special case of this lemma is of course when L = H, then we get

(IndGH V )L ∼=
⊕

s∈L\G/H

IndH
H∩Hs−1 s(V )

which can sometimes be easy to work out if we know a lot about the intersections of H with its
conjugates.

The proof of Mackey’s Theorem is essentially just careful bookkeeping as one moves between
cosets and double cosets. We include it here for completeness.

Proof. Let Ts be a set of left coset representatives for L ∩Hs−1 in L. Then LsH =
⊔
t∈Ts

tsH,
so that, as vector spaces,

IndGH V =
⊕

s∈L\G/H
t∈Ts

ts⊗ V.

Since each t lies in L,
⊕

t∈Ts
ts ⊗ V is a kL-module for each s. Denote this by Vs. Then

(IndGH V )L =
⊕

s∈L\G/H Vs so it suffices to prove that Vs ∼= IndL
L∩Hs−1 s(V ). Since |Ts| = [L :

L ∩ Hs−1 ] we have that dimVs = [L : L ∩ Hs−1 ] dimV and further s ⊗ V ⊆ Vs with s ⊗ V

isomorphic to s(V ) as k(L ∩ Hs−1)-modules. We thus actually only need to show that Vs is
generated by s⊗ V as a kL-module by Corollary 4.4. But LsH = TssH, so this is clear. ■

Next up we have Green’s indecomposability criterion. The proof of this theorem is too long to
include here in full, but is [1, §8, Theorem 8].

Theorem 4.10
Let N ⊴ G with G/N a p-group. If V is an indecomposable kN -module then IndGN V is indecom-
posable.

The key observation in the proof is that since G/N is a p-group, there exists a chain of subgroups
N = Gr ⪇ · · · ⪇ G1 ⪇ G0 = G where [Gi : Gi+1] = p. By induction, one may assume that
[G : N ] = p and this is then the meat of the proof.

Now that we have some conditions for induced modules, we take a quick look at some. We
promised before that we would generalise the concept of permutation modules, and this is that.
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Example 4.11
Let V be the permutation module of G on a subgroup H ≤ G. Then by Lemma 4.6 we have
that V ∼= IndGH k. We can also observe here the previous claim that V G is a 1-dimensional
space spanned by the sum of the standard basis elements. Since k is a 1-dimensional module,
dim HomG(k, V ) = dimV G. Now, using Frobenius–Nakayama Reciprocity (Lemma 4.8) we see
that dim HomG(k, V ) = dim HomG(k, IndGH k) = dim HomG(kH , k) = 1 so that dimV G = 1 and
the fixed space we demonstrated earlier is the only one.

It is also common to use induced modules from various subgroups to find the irreducible modules
for more complicated groups. For example, many of the irreducible modules for the groups of Lie
type in cross characteristic (think G = PSLn(q) where p ∤ q) may be obtained via Harish–Chandra
induction which involves taking modules for well-known lower-rank subgroups, extending them
to a slightly larger group and then inducing these modules up to the whole group. Many of the
irreducible modules for these groups may then be located as composition factors of such modules.

A similar approach can also be used to yield the irreducible modules for the symmetric groups
(at least in coprime characteristic), where one induces modules from certain Young subgroups to
find new irreducible modules as particular submodules (called Specht modules) of these induced
modules. When p | |Sn| this is much more complicated, as the modules found via this method
need not be irreducible.

Now that we have generalised freeness and investigated induced modules, we shall also generalise
projectivity. This will allow us to make an important connection between kG-modules and
p-subgroups of G. As we have previously done, we shall define this new property via a proposition
full of equivalent conditions.
Proposition 4.12
Let V be a kG-module and H ≤ G. Then the following are equivalent:

• V is a direct summand of a relatively H-free module.

• If φ : U → V is split as a kH-homomorphism then φ is split as a kG-homomorphism.

• If φ : U → W and ψ : V → W then there is a kG-homomorphism ρ : V → U with φρ = ψ
provided there is a kH-homomorphism with this property.

• V | IndGH(VH).

Any kG-module V satisfying any (thus all) of the above equivalent properties is said to be
relatively H-projective and all of the other typical abuses of notation and rearrangings that come
with it. We now plan to investigate for which subgroups of G is a given kG-module relatively
H-projective. First, we prove a theorem promised earlier during our example in which we worked
out the projective k SL2(p)-modules (Example 3.38).
Theorem 4.13
Suppose H ≤ G contains a Sylow p-subgroup of G. Then every kG-module V is relatively
H-projective.

Proof. If p ∤ |G| then the trivial subgroup is a Sylow p-subgroup and by previous discussions we
have that every kG-module is relatively H-projective for all H ≤ G. Thus suppose that p | |G| so
that a Sylow p-subgroup of G is nontrivial and that H contains such a subgroup.
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Suppose that φ : V → U is a homomorphism of kG-modules which splits as a kH-module
homomorphism. We must show that φ splits as a kG-module homomorphism, then we will be
done by Proposition 4.12. Let W := kerφ. Then as kH-modules we have V = W ⊕ U . Let
π : V ↠W be a projection map onto W which is a kH-homomorphism. Now, as we saw in the
proof of Maschke’s Theorem (Theorem 3.7), set

π′ := 1
[G : H]

∑
s∈G/H

πs

note that since H contains a Sylow p-subgroup of G we have that [G : H] is invertible in k.
Proceeding exactly as in the proof of Maschke’s Theorem one verifies that the above map is a
homomorphism of kG-modules and so we are done. ■

In particular, the corollary to the above theorem that we used when working out the projective
k SL2(p)-modules is the following.

Corollary 4.14
Suppose H ≤ G contains a Sylow p-subgroup of G and V is a kG-module such that VH is projective.
Then V is projective.

At this point, we are going to be talking about direct summands frequently, so we recall the
notation from before that for kG-modules U and V we say that U | V if U is a direct summand
of V , i.e. there exists W ≤ V and φ : U ↪→ V such that V = φ(U) ⊕W .

Theorem 4.15
Let V be an indecomposable kG-module. Then there is a p-subgroup Q of G, unique up to G-
conjugacy, such that V is relatively H-projective for H ≤ G if and only if H contains a conjugate
of Q.

Moreover, there is an indecomposable kQ-module S, unique up to NG(Q)-conjugacy, such that
V | IndGQ S.

Definition 4.16
In the above theorem, we call the subgroup Q given above a vertex of V and the indecomposable
module S a source of V .

The goal of this definition is that we may use vertices to attempt to ‘measure’ the distance from
projectivity — the smaller Q is, the ‘closer’ our module V is to being projective.

Proof of Theorem 4.15. Since V is relatively projective for a Sylow p-subgroup of G, there exists
a p-subgroup Q of minimal order such that V is relatively Q-projective. In particular, since V is
indecomposable this means that V | IndGQ(V ) and there exists some S | VQ such that V | IndGQ S.
If Q ≤ H ≤ G then V | IndGH(IndHQ S) and so V is relatively H-projective. This also tells us that
V is relatively Hg-projective for any g ∈ G since V ∼= g−1(V ).

Now suppose that V is relatively H-projective for H ≤ G and U is an indecomposable kH-module
such that V | IndGH U . Since V | IndGQ S, clearly V | IndGQ(g(S)) for any g ∈ G. Moreover, if
g ∈ NG(Q) then g(S) is a kQ-module.
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Now, S | VQ and V | IndGH U so S | (IndGH U)Q and Mackey’s Theorem (Lemma 4.9) yields

(IndGH U)Q ∼=
⊕

s∈Q\G/H

IndQQ∩Hs(s−1(U)).

Hence S | IndQQ∩Hs(s−1(U)) for some s ∈ G. But then V | IndGQ∩Hs since V | IndGQ S and so the
minimality of the order of Q forces Q = Q∩Hs so that Qs−1 ⊆ H as required. Further, if Q = H
then Q ∩Qs = Q means that s ∈ NG(Q) so that U = s(S) as claimed. ■

Example 4.17
Now, suppose that P is a Sylow p-subgroup of G and let Q be a vertex for the trivial module.
Since kQ is of course also 1-dimensional and trivial, it is indecomposable and thus a source for k.
Thus

kP | (IndGQ k)P ∼=
⊕

s∈P\G/Q

IndPP∩Qs(s(kQ))

so kP | IndPP∩Qs for some s ∈ G. Set R := P ∩ Qs. Now, soc IndPR k = (IndPR k)P as P is a
p-group, and this fixed space has dimension dim HomP (k, IndPR k) = dim HomR(k, k) = 1. As
soc IndPR k is irreducible, the module itself must be indecomposable. Thus we have that R = P so
that P = Qs and so Q is a Sylow p-subgroup of G. As a corollary of this, we learn that all of the
Sylow p-subgroups of G are conjugate, just in case we didn’t already know.

So what we have shown above is that given an arbitrary group G, the vertex for the trivial module
is a Sylow p-subgroup of G. By our previous description, this means that the trivial module is
always as far from being projective as possible.

We now provide a few more properties of vertices and sources.

Lemma 4.18
Suppose V is an indecomposable kG-module with vertex Q and Q ≤ H ≤ G. Then there is an
indecomposable kH-module U which satisfies any two of the following:

i) U | VH .

ii) V | IndGH U .

iii) U has vertex Q.

One can actually find a module that satisfies all three of the above, but the proof of that statement
requires the Green correspondence, which in turn requires the lemma as stated above.

Proof. Since V is relatively H-projective, V | IndGH V and so in particular there exists indecom-
posable U | VH such that V | IndGH U . This module U satisfies the first two points.

Now suppose that S is a kQ-module which is a source for V so that V | IndGQ S. Now, IndGQ S =
IndGH(IndHQ S)) and so there exists indecomposable U | IndHQ S with V | IndGH U . We claim that U
has vertex Q so that U satisfies the final two points. Since U | IndHQ S we have that U is relatively
Q-projective and thus a vertex R of U lies in Q. Let W be a kR-module with U | IndHR W . Then
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IndGH V | IndGH(IndHR W )) = IndGRW so that V | IndGRW and V is also relatively R-projective.
Thus R contains a conjugate of Q, yet R ≤ Q and so they are equal.

Finally, let S be an indecomposable kQ-module with S | VQ and V | IndGQ S. Then there is
an indecomposable kH-module U with U | VH and S | UQ. If U has vertex Q then it satisfies
conditions i) and iii).

To see this, note that U | VH so U | (IndGQ S)H and by Mackey’s theorem (Lemma 4.9) there
exists s ∈ G such that U | IndHH∩Qs(s−1(S)). Then U has vertex R with R ⊆ H ∩ Qs and we
need only show that R is H-conjugate to Q. Now, U is a summand of a module induced from R
to H and S | UQ so that S is relatively Q ∩Rh-projective for some h ∈ H, but S has vertex Q so
Q ∩Rh cannot be proper in Q so that Q ≤ Rh. But R ≤ Qs and so Q = Rh as required. ■

Lemma 4.19
Let V be a relatively Q-projective kH-module for Q ≤ H ≤ G. Then (IndGH V )H ∼= V ⊕W where
every indecomposable summand of W is relatively projective for a subgroup of the form Qs ∩H
for s ∈ G \H.

Proof. Since V is relatively Q-projective, there exists a kQ-module U such that V | IndHQ U and
so IndHQ U ∼= V ⊕ T for some kH-module T . So IndGQ U ∼= IndGH V ⊕ IndGH T and by Mackey’s
theorem (Lemma 4.9) we have

(IndGQ U)H ∼=
⊕

s∈H\G/Q

IndHH∩Qs s−1(U) ∼= IndHQ U ⊕ Y

where Y is the direct sum of all the terms above corresponding to s /∈ H, meaning that each
summand of Y is relatively projective for a subgroup of the form H ∩Qs as claimed. ■

Lemma 4.20
Suppose that V is an indecomposable kG-module with vertex Q and trivial source. If H ≤ G then
VH has an indecomposable summand with a vertex containing Q ∩H.

Proof. Since V has vertex Q and source k we have that k | VQ so that k | VQ∩H . As such, there
is an indecomposable summand U of VH with k | UQ∩H . Let R be a vertex of U . Since U
is relatively R-projective, Mackey’s theorem (Lemma 4.9) tells us that every indecomposable
summand of UQ∩H is relatively projective for some subgroup of the form (Q∩H) ∩Rh for h ∈ H.
But k | UQ∩H and has vertex Q ∩ H, so an H-conjugate of Q ∩ H lies in Rh and so we are
done. ■

Lemma 4.21
Let V be a kG-module with VN indecomposable for N ⊴ G. If Q is a vertex of V then QN/N is
a Sylow p-subgroup of G/N .

Proof. Let S ∈ Sylp(G) such thatQ ≤ S and SN/N ∈ SylpG/N containsQN/N . By Lemma 4.18,
there is an indecomposable summand of VSN with vertex Q. However, VN is indecomposable
and thus so is VSN . In particular, VSN is relatively QN -projective and V | IndSNQN V . Since
QN/N ≤ SN/N are p-groups, there is a series of subgroups connecting them such that each
term in the series is normal in the preceding one. Hence, iterating Green’s Indecomposability
Criterion (Theorem 4.10) we have that IndSNQN V is indecomposable so VSN ∼= IndSNQN V . Since
dim(IndSNQN V ) = [SN : QN ] dimV we have that SN = QN as required. ■
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We now plan to look at a special case of the Green correspondence which is vastly more accessible
than the full force of the actual result yet still applicable to our main SL2(p) example. For this,
we need the following.
Definition 4.22
Let G be a group and H ≤ G. Then H is a trivial intersection subgroup (or TI subgroup) if for
any g ∈ G we have that H ∩Hg = 1 or H ∩Hg = H.
Theorem 4.23
Let P ∈ SylpG be a trivial intersection subgroup and L = NG(P ). Then there is a one-to-one
correspondence between isomorphism classes of non-projective indecomposable kG- and kL-modules
such that if V and U are such modules, respectively, then

VL ∼= U ⊕Q IndGL U ∼= V ⊕R

for Q and R projective kL- and kG-modules, respectively.

So the correspondence mentioned above is determined by induction or restriction. In fact, all
projective indecomposable summands of Q and R are isomorphic.

Proof. By Mackey’s theorem (Lemma 4.9) we have

(IndGL U)L ∼=
⊕

s∈L\G/L

IndLL∩Ls s−1(U)

so that IndGL U has U as a direct summand corresponding to s ∈ L and a sum of modules induced
from L ∩ Ls for s /∈ L. However, P is a normal (thus unique) Sylow p-subgroup of L with
P ∩ P s = 1 for s /∈ L so that P ∩ P s = 1 ∈ Sylp(L ∩ Ls). So L ∩ Ls is a p′-group and so every
L ∩ Ls-module is projective. Thus (IndGL U)L ∼= U ⊕ Y where Y is projective since the induction
of a projective module is itself projective.

Now, write IndGL U = V1 ⊕· · ·⊕Vn as a direct sum of indecomposable modules. Since L contains a
Sylow p-subgroup of G, by Corollary 4.14 we have that Vi is projective if and only if its restriction
to L is. However, (IndGL U)L has a unique non-projective indecomposable summand in any
decomposition into indecomposables, so all Vi bar one must be projective. Let the non-projective
one be V1 ∼= V . So we now know that IndGL U ∼= V ⊕Q for Q projective and VL ∼= U ⊕R for R
projective since U ⊕ Y ∼= (IndGL U)L ∼= VL ⊕QL.

Now, suppose that V is a non-projective indecomposable kG-module. As L contains a Sylow
p-subgroup of G, every kG-module is relatively L-projective and in particular there exists an
indecomposable kL-module U such that V | IndGL U and V is not projective as its induction is
not projective. Thus VL ∼= U ⊕R for some projective R. We have thus provided a map from the
set of isomorphism classes of non-projective indecomposable kG-modules to the same class for
kL-modules, along with its inverse, as required. ■

One important property of the above is as follows.
Corollary 4.24
Let V1 and V2 be non-projective indecomposable kG-modules with U1 and U2 the corresponding
kL-modules. Then there is a non-split exact sequence

0 → V1 → V → V2 → 0
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if and only if there is a non-split exact sequence

0 → U1 → U → U2 → 0.

Before returning to SL2(p), we require one additional property of this correspondence and for
this property, we need the following.

Definition 4.25
Let V1 and V2 be kG-modules. Then we define HomG(V1, V2) to be the quotient of the vector
space HomG(V1, V2) by the subspace of all homomorphisms which factor through a projective
kG-module, where we say that a map factors through a projective if it is the composition of a
homomorphism U1 → P → U2 with P projective.

Theorem 4.26
If V1 and V2 are non-projective indecomposable kG-modules and U1 and U2 are the corresponding
kL-modules then

HomG(V1, V2) ∼= HomL(U1, U2).

To ease some notation in the future, we shall expand one of our previous definitions.

Definition 4.27
Let V be a kG-module. Then we define the projective cover P(V ) of V to be the minimal
projective module with V as its quotient.

Note that we can do this since every module is a quotient of a free module, and thus a quotient of a
projective module. If V = V1⊕V2⊕· · ·⊕Vn is semisimple then P(V ) ∼= P(V1)⊕P(V2)⊕· · ·⊕P(Vn),
and more generally for an arbitrary kG-module V we have that P(V ) ∼= P(headV ).

Lemma 4.28
Suppose that every projective indecomposable kG-module is uniserial. Then every indecomposable
kG-module is uniserial.

Proof. Suppose that M is an indecomposable kG-module with V ≤ M irreducible and let M ′ be
the submodule of M which is maximal such that M ′∩V = 0. Then by maximality soc(M/M ′) = V .
By the dual of Lemma 3.20, M/M ′ is a submodule of P(V ) and thus uniserial. Thus head(M/M ′)
is simple so that P := P(M/M ′) is a PIM thus uniserial. Now, the projective covering map
π : P → M/M ′ may be lifted to a map π′ : P → M whose image is a uniserial submodule of M
containing V . As such, M ′ ∩ π′(P ) = 0 and so M = M ′ ⊕ π′(P ). Since π′(P ) ̸= 0 and M is
indecomposable, M ′ = 0 and we are done. ■

Note that since every uniserial module is a quotient of the projective cover of its head by
Lemma 3.20, this means that every indecomposable kG-module is a quotient of a projective in
this case.

Lemma 4.29
Suppose that G has a cyclic normal Sylow p-subgroup. Then every projective indecomposable
kG-module is uniserial.
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Proof. Let V ∈ IrrkG, Q ∈ SylpG and P := P(V ). Then PQ is a projective, thus free, kQ-module
of rank dimV . By Lemma 3.23, the radical series of P and PQ coincide and, since kQ has radical
length |Q| and each radical layer of PQ has dimension dimV , the same is true of P . Now, let
U := P/ rad2 P .

Let V ∼= k be the trivial module. By the above, W := radP/ rad2 P must also be a one-dimensional
simple module. Let U := P/ rad2 P . Then we have a non-split extension

0 → W → U → k → 0

with dimU = 2. (In fact, there is a unique isomorphism class of such modules U since Q is cyclic,
but we shall neither say nor see more of this here)

Now, the module V ⊗ U has an irreducible (as dimW = 1) submodule V ⊗ W and quotient
V ⊗ k ∼= V . Since U is not semisimple, by Lemma 3.23 for a generator x of Q we may choose
nonzero u ∈ (1 − x)U = radU . If for nonzero v ∈ V we have that (1 − x)(v ⊗ u) is nonzero then
rad(V ⊗ U) ̸= 0 and thus V ⊗ U is not semisimple. As Q ⊴ G, VQ is semisimple by Clifford’s
Theorem (Theorem 3.15), and since Q is a p-group we have that V QQ = VQ so that xv = v. Thus

(1 − x)(v ⊗ u) = v ⊗ u− x(v ⊗ u) = v ⊗ u− v ⊗ xu = v ⊗ (1 − x)u ̸= 0

as both v and (1 −x)u are nonzero. Thus V ⊗U is itself a uniserial module of composition length
two. It is easy to check that in fact V ⊗ U ∼= P/ rad2 P . Now, suppose that M is a kG-module
with head V . Since M is a quotient of P , either M ∼= V or radM/ rad2 M ∼= V ⊗W .

So, we know that the PIM P has composition length |Q|, its head is isomorphic to V and the
second radical layer is V ⊗ W . The radical radP of P is thus a proper submodule of P with
head V ⊗ W and composition length |Q| − 1. By the previous discussion, either radP ∼= V
(and |Q| = 2) or rad2 P/ rad3 P ∼= V ⊗ W ⊗ W . Continuing in this way, we see that the ith

radical factor of P is isomorphic to the irreducible module V ⊗ (W⊗(i−1)) and, in particular, P is
uniserial. ■

Combining these two results, we obtain the following.

Corollary 4.30
Suppose that G has a cyclic normal Sylow p-subgroup. Then every indecomposable kG-module is
uniserial.

Example 4.31
We return to our main example for this course, so once again let G := SL2(p). Let P be the
set of lower unitriangular matrices in G, so that P ∈ SylpG. Since |P | = p, clearly P is a
TI subgroup. Let L := NG(P ), then L is the set of lower triangular matrices of determinant

1. Let g :=
(
a 0
c a−1

)
∈ L and φ : L → F∗

p be the map given by φ(g) = a. Then clearly φ

is a homomorphism with kernel P and in particular L/P is cyclic of order p − 1. As such,
Irrk L consists of p− 1 1-dimensional modules lifted from this quotient and by Corollary 4.30 all
indecomposable kL-modules are uniserial.

Let Uj denote the 1-dimensional kL-module in which the element g acts as multiplication by
aj . Then Uj1 and Uj2 are isomorphic as kL-modules if and only if j1 ≡ j2 mod p − 1 and
Uj1 ⊗ Uj2

∼= Uj1+j2 . Recall that V2 is the natural module for G which we regard as having basis
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X and Y with gX = aX + cY and gY = a−1Y . Then kY is an L-submodule of V2 isomorphic to
U−1 with quotient U1 and it is easy to check that (V2)L is indecomposable thus uniserial.

Combining this with the proof of Lemma 4.29, we see that the module W in our particular case
may be taken to be U−2. Thus, if M is an indecomposable kL-module with headM ∼= Uj then the
radical factors of M are Uj , Uj−2, Uj−4, . . . . In particular, the radical series of M is determined
solely by headM and dimM ≤ p.

Back in Example 3.13 it was shown that soc((Vi)P ) was 1-dimensional with basis Y i−1 and since
P lies in the kernel of all simple kL-modules this remains the socle of (Vi)L. Looking at the action
of L on this basis, we see that soc((Vi)L) ∼= U−(i−1) and since dimVi = i we obtain a picture

Ui−1
Ui−3

...
U−i+1

of (Vi)L as the unique indecomposable kL-module of dimension i with head Ui−1.

We now require some lemmas before we can properly describe the structure of the kG-modules in
this case.

Lemma 4.32
Let 1 ≤ i < p− 1. Then there exists a non-split extension

0 → Vp−i−1 → V → Vi → 0.

Proof. Let M be the indecomposable kL-module of dimension p − 1 with headM ∼= Ui−1.
Then M/ radiM has dimension i and head Ui−1, thus M/ radiM ∼= (Vi)L and head(radiM)
is simply soc(M/ radiM) ⊗ U−2 ∼= U−i−1 ∼= U(p−1−i)−1. But dim radiM = (p − 1) − i and so
radiM ∼= (Vp−1−i)L and so we have an extension

0 → (Vp−1−i)L → M → (Vi)L → 0

which cannot split as M is indecomposable and so we are done by Corollary 4.24. ■

Lemma 4.33
Let 1 < i ≤ p− 1. Then there exists a non-split extension

0 → Vp+1−i → V → Vi → 0.

Proof. Let Ri := P(Ui) and set M := Ri−1 ⊕ U−i+1, W := radi−1(Ri−1). Then W ∼= (Vp+1−i)L.
Let φ : W ↠ U−i+1 and let Z := {(w,φ(w)) | w ∈ W} ≤ W ⊕ U−i+1. It is easy to see that
Z ∼= W , and we claim that M/Z ∼= (Vi)L. As the dimensions match up, it is sufficient to show
that head(M/Z) ∼= Ui−1. Since rad(M/Z) = (radM + Z)/Z, radM + Z ≤ M and (Ri−1 ⊕
U−i+1)/(rad(Ri−1) ⊕ U−i+1) ∼= Ui−1 we need only show that rad(Ri−1) ⊕ U−i+1 ≤ radM + Z.
It is also clear that rad(Ri−1) ≤ radM thus we reduce to requiring that U−i+1 ≤ radM + Z.

If u ∈ U−i+1, choose w ∈ W with φ(w) = u. Thus (0, u) = (w, u) − (w, 0) ∈ Z + W , but
W ≤ radM so M/Z ∼= (Vi)L as claimed and we obtain an extension

0 → (Vp+1−i)L → M → (Vi)L → 0
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which cannot split since M ∼= Ri−1 ⊕ U−i+1 is a decomposition into indecomposable summands
and clearly not isomorphic to (Vp+1−i)L ⊕ (Vi)L). We are thus again done by Corollary 4.24. ■

With these lemmas in place, we may now explore the structure of the PIMs P1, . . . , Pp for p > 2.
By Lemma 4.32 there is a uniserial module with radical factors V1, Vp−2 which is thus a quotient
of P1 and so we automatically know that P1 looks like

V1
Vp−2
X
V1

for some (possibly zero) module X. In particular dimP1 ≥ 1 + p− 2 + 1 = p with equality if and
only if H(P1) ∼= Vp−2 (equivalently, X = 0).

Similarly, by Lemma 4.33, dimPp−1 ≥ 2p with equality if and only if HPp−1 ∼= V2. Now suppose
that 1 < i < p− 1. Using Lemmas 4.32 and 4.33 we see that there are submodules M+, M− of
radPi such that radPi/M+ ∼= Vp+1−i and radPi/M− ∼= Vp−1−i. Letting M = M+ ∩M− we have
radPi/M ∼= Vp+1−i ⊕ Vp−1−i and so we obtain a picture

Vi
Vp+1−i ⊕ Vp−1−i

X
Vi

for some (possibly zero) module X. Again we have that dimPi ≥ 2p with equality if and only if
X = 0 above. Moreover,

p(p2 − 1) = dim kG

=
p∑
i=1

dimVi dimPi

≥ p+ 2p
p−2∑
i=2

i+ (p− 1)2p+ p2

= p3 − p

and so we must have equality throughout and the modules X in the above pictures are zero.
Thus the projective modules for G are, shockingly, the same as we showed in Example 3.38. If we
did not already know that V1, . . . , Vp were the only irreducible modules, investigating the above
chain of (in)equalities would have also shown this.

Green Correspondence

Theorem 4.23 from the last section is a special case of the Green correspondence which is much
easier to apply. We will now introduce the full version of the Green correspondence, though
this is much more complicated and requires much more care to state correctly. Let Q be a
p-subgroup of G and L := NG(Q). Through the Green correspondence we will obtain a one-to-one
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correspondence between indecomposable kG-modules with vertex Q and indecomposable kL-
modules with the same vertex, and this correspondence will be given via induction and restriction
though it will not be as friendly as in the trivial intersection case.

We now instead let L be any subgroup of G which contains NG(Q). For P , R ≤ G, we will use
the notation P ≤G R to mean that some conjugate of P is contained in R, so P is a subgroup
of R up to conjugacy. If H is a collection of subgroups of G then we say that P ≤G H if there
exists H ∈ H such that P ≤G H. Now, fix the below collections of subgroups of G.

x := {Qs ∩Q | s ∈ G, s /∈ L},
n := {Qs ∩ L | s ∈ G, s /∈ L},
z := {R | R ≤ Q, R ̸≤G x}.

One should think of the collections x and n as ‘small’ subgroups of Q while z should be thought
of as consisting of large subgroups. Each element of x is proper in Q since s /∈ L and L contains
NG(Q), and also Q ∈ z.

Also, for a collection H of subgroups of G we say that a kG-module V is relatively H-projective
if each indecomposable summand of U is relatively projective for some subgroup in H.

Now, the Green correspondence itself is as follows.

Theorem 4.34 (Green Correspondence)
There is a one-to-one correspondence between isomorphism classes of indecomposable kG-modules
with vertex in z and isomorphism classes of indecomposable kL-modules with vertex in z. If U
and V are corresponding such modules for L and G, respectively, then U and V have the same
vertex and

VL ∼= U ⊕ Y and IndGL U ∼= V ⊕X

where Y is a relatively n-projective kL-module and X is a relatively x-projective kG-module.

Of course, we have repeatedly claimed that Theorem 4.23 is a special case of this result, so let’s
verify that claim. Suppose Q is a TI subgroup. Then x = {1} as Qs ∩Q = 1 for all s /∈ L, and
z is the set of all nontrivial subgroups of Q. Further, if Q ∈ SylpG then Qs ∩ L = 1 if s /∈ L,
otherwise Qs ∩ L is a p-subgroup of L and thus there is x ∈ L such that (Qs ∩ L)x ≤ Q and so
Qxs ∩Q ̸= 1 and xs /∈ L. Thus n = 1 and so X and Y are projective.

Now, before proving the Green correspondence we have a few other results to prove.

Lemma 4.35
Let R ≤ Q. Then the following are equivalent.

i) R ≤G x,

ii) R ≤L x,

iii) R ≤L n.

Proof. Suppose i) holds. Then there is some g ∈ G such that Rg ≤ Q∩Qs for some s ∈ G \L. If
g ∈ L clearly we have ii), but if g /∈ L then R ≤ Qg

−1 and so R ≤ Q ∩Qg−1 . But then R ∈ x and
so clearly R ≤L x and ii) holds.
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Now suppose ii) holds. Then there exists x ∈ L and s ∈ G \ L such that Rx ≤ Q ∩ Qs. But
then clearly Rx ≤ L ∩Qs and R ≤L n so iii) holds. Finally, if iii) holds we have some x ∈ L and
s ∈ G \ L such that Rx ≤ L ∩Qs and so R ≤ L ∩Qx

−1s, but x−1s /∈ L and so R ≤G x and thus
i) holds. ■

Lemma 4.36
Suppose V is a relatively x-projective kG-module. Then VL is relatively n-projective. Similarly, if
U is a relatively Q-projective and a relatively n-projective kL-module then IndGL U is relatively
x-projective.

Proof. Let W | V be indecomposable so that W is relatively projective for some subgroup of the
form Qs ∩Q for s /∈ L. Then by Mackey’s theorem we have that WL is relatively projective for
the collection of subgroups of the form

(Qs ∩Q)t ∩ L = Qts ∩Qt ∩ L.

But either t /∈ L or ts /∈ L and so such a subgroup is contained in some element of n and so WL

and VL are relatively n-projective. Conversely, if W | U is indecomposable with vertex P then
P ≤L n and so IndGL W is relatively P -projective and P ≤G z by the previous lemma, so IndGL W
is relatively x-projective and we are done. ■

All that remains is to prove the theorem itself. We first prove two more lemmas.
Lemma 4.37
If V is an indecomposable kG-module with vertex R ∈ z then VL ∼= U ⊕ Y where U is an
indecomposable kL-module with vertex R, V is a summand of IndGL U and Y is relatively n-
projective.

Proof. By Lemma 4.18, there is an indecomposable kL-module U with vertex R such that
V | IndGL U . By Lemma 4.19 we have that (IndGL U)L ∼= V ⊕ Y1 for some relatively n-projective
module Y1 and so there is some summand Y of Y1 such that either VL ∼= U ⊕Y or VL ∼= Y . Again
using Lemma 4.18 we have that there is some indecomposable summand W of VL with vertex R.
Suppose W | Y , then we must have that R ≤L n and R ≤G x by Lemma 4.35 and in particular
R /∈ z, a contradiction. Thus W ∼= U and VL ∼= U ⊕ Y as required. ■

Lemma 4.38
Suppose U is an indecomposable kL-module with vertex R ∈ z. Then IndGL U ∼= V ⊕X where V
is an indecomposable kG-module with vertex R such that U | VL and X is relatively x-projective.

Proof. Take a direct sum decomposition IndGL U = U1 ⊕ · · · ⊕ Ur. Since (IndGL U)L ∼= U ⊕ Y
for Y relatively n-projective by Lemma 4.19, relabeling our modules if necessary, we have that
(V1)L ∼= U + Y1 and (Vi)L ∼= Yi for 2 ≤ i ≤ r for kL-modules Yi such that Y ∼= Y1 ⊕ · · · ⊕ Yr. We
claim V1 has a vertex in z and that the remaining Vi are relatively x-projective. Clearly V1 has a
vertex in x since V1 | IndGL U and V1 is not relatively x-projective by Lemma 4.36.

Let V = V1 and X = V2 + · · · + Vr. Then V | IndGL U and IndGL U ∼= V ⊕ X for X relatively
x-projective. The only remaining claim is that V has vertex R. We know that a vertex of U lies
in z and so the previous lemma tells us that in any decomposition of VL into indecomposable
summands there is a unique summand which is not relatively n-projective and that this summand
has a vertex equal to a vertex of V . But VL ∼= U ⊕ Y and so V has vertex R since U does. ■
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Proof of Theorem 4.34. The majority of the theorem was proved by the previous two lemmas, all
that remains is to show that this correspondence is in fact one-to-one. This boils down to two
claims: First, that if V is an indecomposable kG-module with vertex R ∈ z as well as U is as in
Lemma 4.37 and IndGL U ∼= V ′ ⊕ Y as in Lemma 4.38 then V ∼= V ′, and a similar result for if we
instead start with U . However, in Lemma 4.37 it was shown that V | IndGL U and in Lemma 4.38
that U | VL and thus we are done. ■

A theorem that we shall use in a later proof which requires the Green correspondence to prove is
below.

Theorem 4.39
Let V be an indecomposable kG-module with vertex Q and W be the corresponding kL-module. If
M is a kG-module then V | M if and only if W | ML and if M is an indecomposable kG-module
with W | ML then M ∼= V .

Proof. This is [1, Theorem 12.2]. ■

5 Blocks

Up until this point, we have broadly studied the structure of kG-modules in isolation, referring
only to the structure we can deduce ourselves or from investigating p-local subgroups. However,
indecomposable modules can be more strongly related to one another than this. For a brief
moment, we shall state a result about arbitrary (associative, unital) algebras again.

Theorem 5.1
Let A be an algebra. Then A has a unique decomposition into a sum of indecomposable subalgebras
A = A1 ⊕A2 ⊕ · · · ⊕An.

These indecomposable summands Ai are called the blocks of A with each one a two-sided ideal
of A. Addition and multiplication across A is in fact componentwise between these blocks, so if
ai ∈ Ai and aj ∈ Aj then aiaj ∈ Ai ∩Aj = δijAj (where δij = 1 if i = j and 0 otherwise).

Proof. Take a decomposition of A = A1 ⊕A2 ⊕ · · · ⊕An into indecomposable subalgebras and
let B be a summand in any other such decomposition with b = a1 + a2 + · · · + an ∈ B for
ai ∈ Ai. Since each Ai is unital and B is an ideal, we have ai ∈ B for each i. Hence we have a
decomposition B = (B ∩A1) ⊕ (B ∩A2) ⊕ · · · ⊕ (B ∩An) with each B ∩Ai an ideal of B. As B
is indecomposable, only one of these summands is nonzero, so B ⊆ Ai for some i. Applying an
identical argument to this Ai with regards to the decomposition of A from which we obtained B,
we see that in fact B = Ai for some i and thus our decomposition is unique. ■

For now, fix the notation A = A1 ⊕A2 ⊕ · · · ⊕An as a decomposition of the algebra A into blocks.
Take an A-module M . If AiM = M and AjM = 0 for all j ≠ i then we say that M lies in the
block Ai, and given an Ai-module N we may easily regard N as an A-module by ensuring that
AjN = 0 for all j ̸= i. This clearly yields all A-modules lying in the block Ai.
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Take a decomposition 1 = e1 + e2 + · · · + en for ei ∈ Ai the identity element. If M lies in Ai
then ei is the identity on M and ejM = 0 for all j ≠ i, and again the converse also holds since
AM = AeiM = AiM . Following this to its logical conclusion, we also observe that submodules,
quotients and direct sums of A-modules lying in the block Ai also lie in Ai. Further, if Mi ∈ Ai
and Mj ∈ Aj with i ̸= j then HomA(Mi,Mj) = 0 since for any map φ : Mi → Mj we have that
eiφ(Mi) is the identity but eiMj = 0. These general ideas suggest the following result.

Theorem 5.2
Let M be an A-module. Then M has a unique decomposition

M = M1 ⊕M2 ⊕ · · · ⊕Mn

where Mi ∈ Ai for each i.

Proof. We take the obvious decomposition by letting Mi := AiM , this clearly yields a direct sum
decomposition of M so it remains only to check uniqueness. Suppose that M = N1 ⊕ · · · ⊕Nn
is another such decomposition with Ni ∈ Ai. Then Ni ≤ AiNi ≤ AiM = Mi so Ni ≤ Mi and
hence Ni = Mi since these Ni sum to M . ■

So, given an A-module M lying in the block Ai, as every submodule and quotient of M lies in
Ai we also have that every composition factor of M lies in Ai. Conversely, if every composition
factor of a module M lies in the same block Ai, M lies in that block: ei acts as the identity on
every factor and ej annihilates every factor, and it is easy to see that the same thus holds for the
entire module.

We thus reduce to the question: Given two simple A-modules S and T , when do S and T lie in
the same block? Turns out, someone already asked this question.

Proposition 5.3
Let S and T be simple A-modules. Then the following are equivalent.

i) S and T lie in the same block.

ii) There are simple A-modules S = S1, S2, S3, . . . , Sm = T such that for each i we have Si
and Si+1 are both composition factors of an indecomposable projective A-module.

iii) There are simple A-modules S = T1, T2, T3, . . . , Tm = T such that Ti and Ti+1 are equal or
there is a non-split extension of one by the other.

In the case where A is an algebra and not a group ring, technically some of the results that we
use in this proof have not been given in this course. You can either believe that they still hold in
this case, or just replace A by kG throughout.

The following lemma will feature in the proof:

Lemma 5.4
If X is an A-module and radX is semisimple then for any composition factor W of radX there
is a composition factor U of headX and a non-split extension of U by W .
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Proof. Let radX = W ⊕ W ′. Then the module X/W ′ still satisfies the hypothesis above and
so without loss of generality we may assume that radX = W . There are submodules Y1, . . . ,
Yn of X containing W such that X/W is the direct sum of the simple modules Yi/W . Now,
radX = (radA)X and so radX is the sum of all (radA)Yi = radYi. Hence there is some j such
that radYj ≠ 0. Since W = radX is simple, we have that radYj = W and so Yj is a non-split
extension of the simple module Yj/W by W . ■

Proof of Proposition 5.3. Suppose that T and T ′ are simple A-modules and we have a non-split
extension M of T by T ′. Then M is uniserial and thus a quotient of the indecomposable
projective module corresponding to T , and so iii) implies ii). Now, by Theorem 5.2 we see that
any indecomposable A-module lies in a block and thus ii) implies i). The hard part is getting
back to iii) from here.

Let S and T be simple A-modules lying in a block B of A and suppose that S and T are not
related as in ii). So we may take a decomposition

B = P1 ⊕ P2 ⊕ · · · ⊕ Ps ⊕Q1 ⊕ · · · ⊕Qt

into projective modules where a composition factor of each Pi is related to S via ii) and no
composition factor of any Qi is. Then HomB(Pi, Qj) = HomB(Qj , Pi) = 0 for all i, j as no
composition factor of any Qj may be a composition factor of any Pi. Then P = P1 ⊕P2 ⊕ · · · ⊕Ps
and Q = Q1 ⊕ · · · ⊕ Qt are invariant under all endomorphisms of B and are in fact ideals,
contradicting the indecomposability of B as an algebra. So i) implies ii).

It remains only to show that ii) implies iii). It is sufficient to show that if V is a simple A-
module with corresponding projective indecomposable module P then V is related to every
composition factor of P as in iii). More specifically, we claim that if W is a composition factor
of radi+1 P/ radi+2 P then there is a composition factor U of radi P/ radi+1 P and a non-split
extension of U by W . In fact, this follows from Lemma 5.4 applied to radi P/ radi+2 P . ■

We now take a brief diversion to look at SL2(p) again.

Example 5.5
Let G = SL2(p) with simple modules V1, . . . , Vp. Recall that the module Vp is projective and
that the composition factors of each projective indecomposable kG-module are either all of even
dimension or all of odd dimension. Provided p ̸= 2, referring to Example 3.38 we can immediately
see that IrrkG = B1 ⊔B2 ⊔ {Vp} where B1 = {V1, V3, . . . , Vp−2} and B2 = {V2, V4, . . . , Vp−1} is
a decomposition of IrrkG into blocks. When p = 2, we must have B2 = 0.

Example 5.6
The second condition of Proposition 5.3 also tells us how to decompose A into blocks if we already
know a decomposition of A into projective indecomposable modules. Suppose that A = P1 ⊕· · ·Pn
for Pi projective. Suppose that P1, . . . , Pj all lie in the same block and that no other Pi lie in
this block. Then the block is equal to P1 ⊕ . . .⊕ Pj .

We now wish to specialise our results to the case of group algebras once again. Regard the group
algebra kG as a module for the group algebra k[G×G] via the action (g1, g2)h = g1hg

−1
2 (note

the inverse is on the right as we require this to be a left action since we work with left modules.
Inconveniently, I use hg := g−1hg so that we have to conjugate by g−1 to obtain a left action).
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Then submodules of kG as a k[G×G]-module are precisely the two-sided ideals of kG and so
in particular kG has a unique decomposition into indecomposable k[G×G]-modules and these
are the blocks of kG. As k[G×G]-modules, these blocks are pairwise non-isomorphic since their
annihilators in k[G× 1] ≤ k[G×G] are different.

Let δ : G → G×G be the diagonal embedding: δ(g) := (g, g).

Theorem 5.7
Let B be a block of kG. Then, as a k[G × G]-module, B has a vertex of the form δD for D a
p-subgroup of G.

Proof. It is sufficient to show that B is relatively δ(G)-projective, since then δ(G) contains a
vertex of B which must be of the required form. In fact, since B | kG as k[G×G]-modules we
need only show that kG is δ(G)-projective. But kG contains the k-subspace spanned by 1, which
is a trivial k[δ(G)]-module that we shall denote by k. Further,

dim kG = |G| dim k = [G×G : δ(G)] dim k

and clearly k generates kG as a k[G×G]-module. Hence by Corollary 4.4 we have that kG ∼=
IndG×G

δ(G) k and kG is relatively δ(G)-free and thus in particular it is relatively δ(G)-projective. ■

Now, if H, K ≤ G are such that δ(H) and δ(K) are conjugate in G × G then H and K are
conjugate in G. This allows us to make the following definition.

Definition 5.8
Let B be a block of kG with vertex (as a k[G×G]-module) δ(D). Then the conjugacy class of
subgroups DG are the defect groups of B. If |D| = pd then we say that B has defect d.

From time to time we will abuse notation by referring to the defect group of a block to refer to
any choice of subgroup from the conjugacy class. In the same way that the size of the vertex
of a module measures its distance from projectivity, the size of the defect group of a block B
measures its distance from being semisimple as an algebra. If a block B has a Sylow p-subgroup
of G as a defect group, then we say that B is of maximal defect.

Now, much as the modules in a block are related to one another, the defect group of a block also
relates to the modules within that block.

Theorem 5.9
Let B be a block of G with defect group D. Then any indecomposable module lying in B has a
vertex contained in D.

Proof. Regard B as a kG-module with G acting by conjugation. If V is a kG-module then there
is a map φ : B ⊗ V → V given by φ(β ⊗ v) = βv which can be seen to be a kG-homomorphism.
We also have a homomorphism V → B ⊗ V : Let e be the unit element of B, then we map v ∈ V
to e⊗ v. Thus V | B ⊗ V and so if B ⊗ V is relatively D-projective then so is V . In fact, if B is
relatively D-projective then so is B ⊗ V for any kG-module V .

We may regard B as a k[δ(G)]-module via the isomorphism G ∼= δ(G) and thus reduce to the
requirement that B is relatively δ(D)-projective as a k[δ(G)]-module. However, B, as a k[G×G]-
module, is induced from a k[δ(G)]-module and so, by Mackey’s Theorem (Lemma 4.9) we have
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that, as a k[δ(G)]-module, B is relatively projective for the subgroups δ(G) ∩ δ(D)(g1,g2) for g1,
g2 running over G. If every such subgroup is conjugate in δ(G) to a subgroup of δ(D) then we
are done.

If d ∈ D, g1, g2 ∈ G and δ(d)(g1,g2) ∈ δ(G), then dg1 = dg2 so that

δ(d)(g1,g2) = (dg1 , dg2) = (dg1 , dg1) = δ(d)δ(g1)

is contained in a δ(G)-conjugate of δ(D), as required. ■

Much as there is an irreducible module which we can construct for any group, the trivial module,
there is a block that we can construct for any group too.

Definition 5.10
The principal block b0(G) of a finite group G is the block of kG which contains the trivial module.

Note by previous discussions, the trivial module k has the Sylow p-subgroups of G as its vertices
and by Theorem 5.9 the order of a vertex of k is a lower bound on the order of a defect group of
b0(G). As such, b0(G) is always a block of maximal defect for any group G, and it has the Sylow
p-subgroups of G as its defect groups.

One might assume from the definition of a defect group that they can be an arbitrary p-subgroup
of G, but this is in fact not the case. Let Op(G) denote the largest normal p-subgroup of G.

Theorem 5.11
Let B be a block of G with defect group D. Then

i) If P ∈ SylpG contains D then there exists c ∈ CG(D) such that D = P ∩ P c.

ii) We have Op(G) ≤ D, i.e. D contains every normal p-subgroup of G.

iii) We have D = Op(NG(D)).

The first statement implies the other two: Suppose i) holds and let N ⊴ G be a p-subgroup.
Then N is contained in every Sylow p-subgroup of G and thus lies in the intersection of all of
them. In particular, N lies in the intersection of any two, and thus in any defect group.

Now let T ∈ Sylp(NG(D)) and choose P ∈ Sylp(G) containing T . Then D ≤ T ∩T c ≤ P ∩P c = D.
But T c ∈ Sylp(NG(D)) and so D is also the intersection of Sylow p-subgroups of NG(D), and
since every normal p-subgroup of NG(D) lies in all Sylow p-subgroups of NG(D) we also obtain
iii). Proving i) is much more difficult, and shall not be included in the lectures but we shall leave
it here for completeness.

We first collect in this lemma some useful results.

Lemma 5.12
Let H ≤ G and t ∈ G.

i) The k[H ×H]-module kHtH = Indk[H×H]
δ(H∩Ht−1 )(1,t) k.
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ii) If H is a p-group then kHtH is indecomposable as a k[H × H]-module with vertex δ(H ∩
Ht−1)(1,t).

iii) If Q ≤ H is a p-subgroup, CG(Q) ≤ H and t /∈ H then no indecomposable summand of
kHtH has a vertex containing δ(Q).

The module kHtH mentioned above is simply the k-span of the double coset HtH.

Proof. Consider the subgroup of H ×H of elements which fix t. We have (h1, h2)t = t if and only
if h1th

−1
2 = t, that is h2 = ht1. Thus this subgroup consists of all pairs (h, ht) with h ∈ H ∩Ht−1 .

More specifically, our subgroup is δ(H ∩Ht−1)(1,t). Now, dim kHtH is the product of |H| and
the number of cosets in HtH, which is

dim kHtH = |H|[H : H ∩Ht−1
] = [H ×H : δ(H ∩Ht−1

)(1,t).

Now, t generates kHtH as a k[H × H]-module and so i) follows and ii) also follows since it is
induced from the trivial module of a p-subgroup, and since the trivial module has the Sylow
p-subgroups as its vertices we obtain ii).

To see iii), from i) we have that each indecomposable summand of kHtH has vertex contained
in δ(H ∩ Ht−1)(1,t). If iii) were false, there would exist an H × H-conjugate of δ(Q) which is
contained in δ(H ∩Ht−1)(1,t). In particular, there would exist h1, h2 ∈ H such that δ(Q)(h1,h2) ≤
δ(G)(1,t) or, alternatively, δ(Q)(h1,h2)(1,t)−1 ≤ δ(G). Thus if x ∈ Q we have xh1 = xh2t

−1 and so
h1th

−1
2 ∈ CG(Q) and t ∈ h−1

1 CG(Q)h2 ≤ H, a contradiction. ■

Proof of Theorem 5.11. From the discussion after the theorem statement, we see we only need
to prove i). Since δ(D) ≤ P × P and B as a k[G × G]-module has δ(D) as a vertex, by
Lemma 4.18, BP×P has an indecomposable summand with vertex δ(D). But B | kG and
(kG)P×P ∼=

⊕
t∈P\G/P kPtP since G is a disjoint union of double cosets PtP . But Lemma 5.12

shows that each of these double cosets is indecomposable as a k[P × P ]-module with vertex
δ(P ∩P t−1)(1,t). Hence there is some t ∈ G such that δ(D) is P ×P -conjugate to δ(P ∩P t−1)(1,t).
So there exists q, r ∈ P such that δ(D) = δ(P ∩ P t

−1)(1,t)(q,r)−1 . In particular, |D| = |P ∩ P t
−1 |.

Further, we have δ(D)(q,r)(1,t)−1 ≤ δ(G) and so for any d ∈ D we have dq = drt
−1 and so

qtr−1 ∈ CG(D).

Set c := qtr−1. It is thus sufficient to show that D = P ∩ P c−1 . This intersection clearly contains
D since D ≤ P and c ∈ CG(D). Now,

|P ∩ P c
−1

| = |P ∩ qtr−1Prt−1q−1|

= |P q ∩ P t
−1

|

= |P ∩ P t
−1

|
= |D|

and thus these two subgroups are equal, as required. ■

Definition 5.13
Let H ≤ G and suppose that b is a block of H and B a block of G. We say that B corresponds
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to b and write B = bG provided that, as k[H ×H]-modules, we have b | B and that B is the only
block with this property.

This yields a map from a subset of the blocks of H to the blocks of G. If such a block B = bG

exists for a block b of H, we say that bG is defined.

Lemma 5.14
Let b be a block of H ≤ G with defect group D. Then the following hold.

i) If bG is defined then D is contained in a defect group of bG.

ii) If H ≤ K ≤ G while bK , (bK)G and bG are defined then bG = (bK)G.

iii) If CG(D) ≤ H then bG is defined.

Proof. Let E be a defect group of B = bG so that the k[G×G]-module B has vertex δ(E). Since
b | BH×H , Mackey’s Theorem (Lemma 4.9) tells us that the vertex δ(D) of b is G×G-conjugate
to a subgroup of δ(E). However, if (g1, g2) ∈ G×G is such a conjugating element, then Dg1 ≤ E
and this proves i). Part ii) then follows immediately from the definition since b | (bG)H×H and
b | ((bK)G)H×H .

To show iii), it is sufficient to check that b occurs only once in a decomposition of (kG)H×H into
indecomposables. Now, kH is a direct sum of the blocks of H, which are pairwise nonisomorphic
as k[H ×H]-modules. It thus siffices to show that b ∤ kHtH for t /∈ H. But δ(D) is a vertex of b
and Lemma 5.12 says that no indecomposable summand of kHtH has a vertex containing δ(D)
and so we are done. ■

Note that the condition iii) of Lemma 5.14 is a sufficient but not a necessary condition. To see
this, we have the following example.

Example 5.15
Let G := D2n be dihedral of order 2n for n odd and let p = 2. Let H be the normal 2-complement
in G, i.e. the index 2 normal subgroup which is cyclic of order n. Then H is an abelian 2′-group
and thus |IrrkH| = |H| = n. Let b0(G) denote the block of kG which contains the trivial module
k. Since H is a 2′-group, it is clear that b0(H) ∼= P(k) ∼= k. Since k is projective as a H-module,
so is IndGH k, and since IndGH k has dimension two it is either semisimple or a non-split extension of
k by k. By previous discussions, the trivial module is projective precisely when kG is semisimple,
which we know not to be the case here. As such, as a kG-module we have P(k) is a non-split
extension of k by k and thus by condition ii) of Proposition 5.3 we have that b0(G) ∼= P(k) and
the trivial module is the only irreducible module lying in the principal block.

Thus b0(H) | b0(G) as k[H × H]-modules. Clearly there can be no other block of G with this
property, so b0(H)G = b0(G). Now, the defect group of the principal block for H is a Sylow
2-subgroup of H, but H is a 2’-group and thus the defect group for b0(H) is 1. But CG(1) = G is
not contained in H.

Letting n = 3, we have G ∼= D6 ∼= SL2(2) and so this may actually be visualised through our
previous examples.
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We now wish to investigate how blocks of our group G relate to those of its subgroups. The
situation here is not as simple as it is for modules, but there are still things that may be done.

The theorem we require the above result for is Brauer’s First Main Theorem, below.

Theorem 5.16 (Brauer’s First Main Theorem)
If D ≤ G is a p-subgroup and NG(D) ≤ H then there is a one-to-one correspondence between the
blocks of H with defect group D and the blocks of G with defect group D given by letting the block
b of H correspond to the block bG of G.

Proof. Note that since certainly CG(D) ≤ H the block bG is defined by Lemma 5.14. Let b be a
block of H with defect group D and B := bG. Since H ×H ≥ NG×G(δ(D)), b is indecomposable
as a k[H ×H]-module, has vertex δ(D) and b | BH×H , by Theorem 4.39 we have that B also has
vertex δ(D) so that B also has defect group D. Further, B and b are Green correspondents with
respect to H ×H. As such, the map sending b to bG is an injection from blocks of H with defect
group D to blocks of G with the same defect group.

We need only show that all such blocks of G arise in this manner. Using Lemma 4.18 we see
that BH×H has some indecomposable summand with vertex δ(D). However, B | kG and the only
indecomposable summands of (kG)H×H which have a vertex containing δ(D) are the summands
of kH by Theorem 5.11 and these are the blocks of H. As such, there is a block b of H with
defect group D such that b | BH×H as required. ■

If H = NG(D) then we call the block b the Brauer Correspondent of bG. This then yields b as
the Green correspondent of the k[G×G]-module bG.

Theorem 5.17 (Brauer’s Second Main Theorem)
Let V be an indecomposable kG-module lying in the block B of G. Let W be an indecomposable
kH-module for H ≤ G lying in the block b of H with vertex Q such that CG(Q) ≤ H. If W | VH
then bG is defined and bG = B.

We have a family of important corollaries to this theorem.

Corollary 5.18
If V is an indecomposable kG-module lying in the block B with vertex Q and corresponding
indecomposable kNG(Q)-module W lying in the block b then bG is defined and bG = B.

This approximately says that if V and W correspond via the Green correspondence then their
blocks are Brauer correspondents.

Corollary 5.19
If B is a block of G with defect group D then there is an indecomposable kG-module lying in B
with vertex D.

The proof of this corollary will not feature in lectures as it requires the Green correspondence.

Proof. Let b be the block of NG(D) corresponding to B and V be a simple kNG(D)-module lying in
b so that V is a k[NG(D)/D]-module. Let P be a projective indecomposable module for NG(D)/D
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corresponding to V , so P also lies in b. Now, P is a summand of k[NG(D)/D] ∼= IndNG(D)
D k so

P is relatively D-projective and PD = (PD)D. But then by Lemma 4.18 PD has a summand
with the same vertex as P , so P must have vertex D as the trivial module always has a Sylow
p-subgroup as a vertex. Let U be the indecomposable kG-module corresponding to V via the
Green correspondence. Hence, U has vertex D and lies in B by the previous corollary. ■

Corollary 5.20
The block B of G is a simple algebra if and only if B has defect zero.

We wish to include all three of Brauer’s main three theorems in these notes, so we now give the
third.

Theorem 5.21 (Brauer’s Third Main Theorem)
If b is a block of H ≤ G with defect group D and CG(D) ≤ H then bG = b0(G) if and only if
b = b0(H).

The proof of this theorem is given at the start of [1, §16] but we do not include it here as it makes
use of tools that we haven’t the time to introduce during this course.

6 Cyclic defect groups

We now take all of the tools we have been developing throughout the course and apply them to
the case where the block B of G has a cyclic defect group. This situation occurs whenever the
Sylow p-subgroups of G are cyclic. We have previously looked at the situation where G has a
cyclic normal Sylow p-subgroup (Corollary 4.30) and SL2(p) (Examples 3.38 and 4.31). However,
it is actually possible to describe the structure of the projective modules for any block whose
defect group is cyclic through the use of a structure known as a Brauer tree. The existence of
Brauer trees is truly quite remarkable, as we shall see. We shall largely be following Alperin [1,
Chapter V] for the start of this section.

Our first question, then, is clear: what is a Brauer tree? Unsurprisingly, it is a tree: a finite,
connected, undirected graph containing no cycles or loops, but we also require a circular ordering
of the edges incident at a given vertex and a distinguished vertex, called the exceptional vertex
with a positive integer (called the multiplicity or occasionally exceptionality) associated to it. By
the aforementioned circular ordering we mean that given a vertex v and an edge E incident at v,
there is an edge which comes after E. One typically encodes this information by drawing the
Brauer tree such that these circular orderings are obtained by simply travelling anti-clockwise
about the vertex. Traditionally the exceptional vertex is drawn filled-in and all other vertices
remain blank. We will draw all vertices the same way, and simply attach the multiplicity to the
exceptional vertex on the graph itself. There are two particularly common instances of Brauer
trees: stars and lines.

Definition 6.1
A star is a tree with n vertices, one of which has degree n − 1 and all others have degree 1
(alternatively, one may regard this as a complete bipartite graph K1,n−1). We may represent
this as on the left in Fig. 1 where we have chosen the central vertex to be exceptional with
exceptionality m.

46



Definition 6.2
A line (also called an open polygon) is a tree with two vertices of degree one and a Hamiltonian
path between them (that is, a path including all vertices). We may represent this as on the right
in Fig. 1 where there is no exceptional vertex (this is equivalent to the exceptional vertex having
multiplicity 1, as we shall see).

m

Figure 1: A star and a line.

Now, how exactly does the Brauer tree relate to the structure of our blocks? We do this via the
below definition.

Definition 6.3
An algebra A is called a Brauer tree algebra if there is a Brauer tree so that the projective
indecomposable A-modules are described by the graph as follows:

• There is a one-to-one correspondence between isomorphism classes of simple A-modules
and the edges of the tree.

• If S is a simple A-module then S ∼= soc(P(S)) ≤ rad(P(S)) ≤ P(S) and H(P(S)) is the
direct sum of two (possibly zero) uniserial modules described by the orderings of the edges
incident at the vertices at the endpoints of the edge corresponding to S as follows: Suppose
that the edge corresponding to S has endpoints u and v with the edges incident at u (in
order) correspond to the simple modules S, U1, U2, . . . , Ur and similarly the edges incident
at v (in order) correspond to the simple modules S, V1, V2, . . . , Vn. If neither u nor v are
exceptional, H(P(S)) ∼= U ⊕ V where U and V are uniserial and have respective radical
series U1, U2, . . . , Ur and V1, V2, . . . , Vn. If one of u or v is exceptional, without loss of
generality we may assume that it is u with exceptionality m. Then the module U instead
has radical series U1, U2, . . . , Ur, S, U1, U2, . . . , Ur, S, . . . , Ur−1, Ur where each Ui appears
as a composition factor of U with multiplicity m and S appears m− 1 times.

The description above yields a picture of P(S) in the non-exceptional case as

P(S) ∼
S

U ⊕ V
S

where U ∼

U1
U2
U3
...
Ur

, V ∼

V1
V2
V3
...
Vn
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and when u is exceptional we instead have

P(S) ∼
S

U ⊕ V
S

where U ∼

U1
U2
...
Ur
S
U1
...
Ur
S
U1
...Ur

, V ∼

V1
V2
V3
...
Vn

with S occurring as a composition factor of H(P(S)) m− 1 times.

An easy way to remember how to determine the structure of the module U is as follows: Take a
walk around the vertex u m times (where if u is not exceptional we set m = 1), starting just after
the edge corresponding to S and ending just before returning to it.

We now look at some noteworthy special cases of Brauer trees.
Example 6.4
Suppose that A is a Brauer tree algebra for the below Brauer tree.

m

Then A has one simple module, S, and the uniserial module corresponding to the right vertex
is zero, with the other module being uniserial of composition length m− 1 and all composition
factors isomorphic to S. Thus P(S) is uniserial with m+ 1 composition factors all isomorphic to
S. If G is a cyclic group of order pn then kG is a Brauer tree algebra for this Brauer tree with
m = pn − 1.

As we will now quite often need to talk about uniserial modules, we briefly introduce some
notation to simplify matters and allow us to take up less space when doing so.
Definition 6.5
Suppose that V is a uniserial module with composition factors V1, V2, . . . , Vn. Then we may
describe the structure of V with the notation V ∼ [V1 | V2 | V3 | . . . | Vn].
Example 6.6
Suppose that A is a Brauer tree algebra for the below Brauer tree.

2
S1

S2

S3 S4
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Then the projective indecomposable modules for such an algebra are as follows. We have
P(S1) ∼ [S1 | S2 | S3 | S1 | S2 | S3 | S1], P(S2) ∼ [S2 | S3 | S1 | S2 | S3 | S1 | S2] and
P(S4) ∼ [S4 | S3 | S4] with the only non-uniserial projective indecomposable module being
illustrated below with the heart of P(S3) isomorphic to U ⊕S4 where U ∼ [S1 | S2 | S3 | S1 | S2]..

P(S3) ∼

S3
S1
S2
S3
S1
S2

⊕
S4

S3

Let G := Sz(q) = 2B2(q) for q = 22n+1 and n > 0. Then |G| = q2(q − 1)(q − s + 1)(q + s + 1)
where s2 = 2q and G is a finite simple group (Sz(2) is still defined, but only has order 20 and is
not simple). If p | q − s+ 1 then the principal block of kG is a Brauer tree algebra for the above
Brauer tree with exceptionality (instead of the 2 used above) (px − 1)/4 where px is the p-part of
q − s+ 1.

Example 6.7
Now, recall from Corollary 4.30 and the results required to prove it that if G has a cyclic normal
Sylow p-subgroup P , there is a 1-dimensional module W which we can use to determine the
structure of the PIMs. One may also check that if B is a block of kG then we may choose notation
so that Irrk B = {S1, . . . , Sr} (where Irrk B denotes the irreducible kG-modules lying in B) such
that Si+1 ∼= Si ⊗ W with Sr ⊗ W ∼= S1. This tells us that in fact B is a Brauer tree algebra
for a star which has r edges and central exceptional vertex with exceptionality (|P | − 1)/r. In
particular, this Brauer tree may be drawn as below.

|P |−1
r

S1

Sr

S2

Example 6.8
Return to the case G = SL2(p). As mentioned previously, for p > 2 there are three blocks for kG.
In particular, the non-projective kG-modules V1, . . . , Vp−1 fall into two blocks which can be seen
to be Brauer tree algebras with the following trees (with p ≡ ε mod 4 for ε = ±1).

2

V1 Vp−2 V3 V(p+ε)/2

2

Vp−1 V2 Vp−3 V(p−ε)/2
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We now fix some notation. Let B be a block of G with cyclic defect group D of order pn (n ≥ 1).
Let b be the block of NG(D) which is the Brauer correspondent of B. The index of DCG(D) in
the stabiliser in NG(D) of a block of DCG(D) which is covered by b is called the inertial index
of B, denoted e. This is a well-defined number since all blocks of DCG(D) covered by b are
NG(D)-conjugate. The fundamental result for Brauer trees is the following.
Theorem 6.9
The block B is a Brauer tree algebra for a tree with e edges and exceptionality (pn − 1)/e.

The proof of this result takes pretty much an entire chapter in [1], so of course we do not have
room for it here. We can, however, provide a brief overview of a route to the proof. Let D1 be
the subgroup of D of order p and let N1 := NG(D1). Let b = bN1

1 so that b1 is a block of N1 with
defect group D and bG1 = B. The first step to the proof of the above theorem is to study b1 and
in particular prove the following.
Theorem 6.10
The block b1 is a Brauer tree algebra for a star with e edges and central exceptional vertex with
exceptionality (pn − 1)/e.

Once the structure of b1 itself is known, it is then necessary to use this to obtain information
about the structure of B via the following theorem which (with some work) follows from the
Green correspondence.
Theorem 6.11
There is a one-to-one correspondence between isomorphism classes of non-projective indecomposable
B-modules and isomorphism classes of non-projective indecomposable b1-modules such that if U
and V are corresponding such B and b1-modules, respectively, then

IndGD1
V ∼= U ⊕Q

UN1
∼= V ⊕W

where Q is a projective kG-module and W is a direct sum of a projective kN1-module and modules
which lie in blocks of N1 other than b1.

Using the above theorem the proof then roughly proceeds as follows: Prove that |Irrk B| = e,
where e is the inertial index of B, then looking at the possible extensions between these irreducible
modules show that B is a Brauer graph algebra (where a Brauer graph is broadly the same as a
Brauer tree, except not necessarily a tree and may have more than one exceptional vertex), and
from this one then concludes that the Brauer graph in question must be a Brauer tree.

Obviously, we have skipped over a lot of detail — in [1] the proof of the theorem spans about 50
pages! We shall instead investigate some related results.

Since any block with a cyclic defect group has a Brauer tree, a natural question to ask is: which
trees can be the underlying graph for a Brauer tree? This question was answered by Feit [10] in
the 80s.
Definition 6.12
Let τ be a tree and let v0 be a vertex of τ and n ∈ N. Then we define (τ, v0)n to be the union
of n copies of τ with the vertices v0 identified. Now, two trees τ and σ are said to be similar if
there exists a tree γ such that τ ∼= (γ, v0)n and σ ∼= (γ, v′

0)m for some vertices v0, v′
0 of γ and

positive integers m, n.
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One way to regard this definition is to say that two trees are similar if they can both be obtained
by sticking together many copies of some other tree.

The first main result of Feit’s paper is as follows, where we say that a tree τ belongs to a group G
if there exists a block B of G such that τ is the underlying graph of a Brauer tree for B.

Theorem 6.13 [10, Theorem 1.1]
Let G be a finite group and let τ be a tree belonging to G. Then there exists a simple group
H involved in G and a group H̃ where H = H̃ if |H| = p and otherwise H̃ is perfect with
H̃/Z(H̃) ∼= H such that τ is similar to a tree that belongs to H̃. Further, if τ = (γ, v0)n for some
n > 1 then v0 is the exceptional vertex of τ if it has one.

Broadly speaking, this tells us that to determine the trees which may appear as Brauer trees for
blocks of finite groups, it is sufficient to determine the Brauer trees of blocks of finite simple and
quasisimple groups. Also, in the case where G is p-soluble (all nonabelian composition factors of
G have order coprime to p) this tells us that τ must be similar to the tree

and so in particular must be a star with exceptional vertex in the centre.

Making use of the classification of finite simple groups, it was then possible to prove the following.

Theorem 6.14 [10, Theorem 1.2]
Let G be a finite group and let τ be a tree belonging to G. Then τ ∼= (γ, v0)n for some n ∈ N
where v0 is the exceptional vertex (if there is one). Further, either γ has at most 248 edges or γ
is a line.

So we see that any Brauer tree of a block of a finite group is either similar to a ‘small’ graph or
to a line.

We now take a brief diversion to explore what, specifically, makes the case of blocks with cyclic
defect groups so different to the general case. For that, though, it is helpful to introduce some
definitions.

At this point, we reiterate our assumption that the field k is algebraically closed (though there
are still things to be done at least for group algebras over non–algebraically closed fields, they
complicate matters).

Given an algebra A, there is a notion of representation type for A which, broadly speaking,
describes how complicated the representation theory of this algebra is.

Definition 6.15
Let A be an algebra. Then A is said to be of finite representation type if there are only finitely
many isomorphism classes of indecomposable A-modules. Otherwise, the representation type of
A is infinite.

Among those algebras of infinite representation type, we further distinguish between those that
are in some sense manageable, and those that are not. The formal definitions of these properties
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are quite complicated! For the next definition, note that an A-B-bimodule is simply a left
A-module M which is also a right B-module such that the actions of A and B are compatible,
so (am)b = a(mb) for a ∈ A, b ∈ B and m ∈ M . Also recall that k[X] denotes the polynomial
algebra in X over k.

Definition 6.16
Let A be an algebra. Then the representation type of A is tame if it is not finite and for any integer
d > 0 there are a finite number of k[X]-A-bimodules Mi which are free as left k[X]-modules
such that all but a finite number of indecomposable A-modules of dimension d are isomorphic to
N ⊗k[X] Mi for some i and some simple k[X]-module N .

Broadly speaking, this simply says that there exists a ‘reasonable’ parameterisation of the
indecomposable A-modules. These tame algebras are those algebras of infinite representation type
which are in some sense manageable, which leaves us with those that are not. Unsurprisingly, this
definition is also complicated and requires the use of terms that we haven’t the room to formally
define in this course. Here k⟨X,Y ⟩ is the free algebra in two generators over k, which is akin to
the polynomial algebra except that we do not require that the indeterminates X and Y commute.

Definition 6.17
Let A be an algebra. Then the representation type of A is wild if there is a finitely generated
k⟨X,Y ⟩-A-bimodule B which is free as a left k⟨X,Y ⟩-module such that the functor − ⊗k⟨X,Y ⟩ B
from mod-k⟨X,Y ⟩ to mod-A preserves indecomposability and reflects isomorphisms.

Roughly, (and, vitally, attempting to avoid any actual discussion of category theory) the above
states that the representation theory of the free algebra k⟨X,Y ⟩ may be embedded into the
representation theory of any wild algebra. It follows from this, in fact, that the representation
theory of any algebra B may then be embedded into the representation theory of any wild algebra
A. (At this point it is helpful to recall that all of our algebras are finite-dimensional)

Now, we presented these representation types as three distinct options but it is obviously necessary
to prove as much. The below theorem was originally proven by Drozd (Russian: [9], 1986 English
translation: [15]) but there is also a 1987 proof in English due to Crawley-Boevey [4].

Theorem 6.18 (Trichotomy theorem)
Let A be an algebra over an algebraically closed field k. Then the representation type of A is
either finite, tame or wild.

Now, the reason we introduce these results is, of course, because we would like to apply them to
the case of group algebras.

Theorem 6.19
Let G be a finite group and B a block of kG. Suppose that D ∈ Sylp(G) or, respectively, D is a
defect group of B. Then the representation type of kG, respectively of B, is

i) finite if D is cyclic.

ii) Tame if p = 2 and D is dihedral, semidihedral or generalised quaternion.

iii) Wild, otherwise.
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The fact that the representation type of kG (or a block) is tame when the Sylow p-subgroups
(or defect groups) are so specific is largely due to a result of Brenner [2] which shows that the
representation type of a non-cyclic p-group P is wild unless [P : P ′] ≤ 4. However, for a p-group
P of order at least p2 we have that the index of the commutator subgroup of P is always at least
p2, so the only possibilities for tame p-groups are 2-groups. It in fact turns out that the 2-groups
for which the representation type is tame are precisely the 2-groups of maximal class, which are
the three types of 2-group listed above.

Now, the purpose for this diversion is the following observation: If a block B has a cyclic defect
group then there are finitely many isomorphism classes of indecomposable modules in B. Since
there are only finitely many it thus makes sense to ask: can we determine what they are? It turns
out, the answer is yes. The following exposition largely follows a paper of Janusz [13, §5].

The below is true for any Brauer tree algebra, but we shall state results only for group algebras
for simplicity.

Theorem 6.20
Let Γ be a Brauer tree with exceptional vertex of exceptionality m ≥ 1 and let B be a block with
Brauer tree Γ. For an edge E of Γ let VE denote the irreducible kB-module corresponding to the
edge E.

i) Let E, F be edges in Γ both incident at a common vertex v. If v is not exceptional then let
n = 1, otherwise let 1 ≤ n ≤ m. Then there is a unique uniserial module M = M(F,E;n)
such that VF ∼= headM and VE ∼= socM with VE and VF both having multiplicity n as a
composition factor of M .

ii) Now let E be an edge containing the exceptional vertex and let 2 ≤ n ≤ m. Then there is a
unique uniserial module M = M(E,E;n) such that headM ∼= socM ∼= VE and VE appears
as a composition factor of M with multiplicity n.

Further, each of the modules listed in i) and ii) are reducible and non-projective, and any reducible,
non-projective uniserial kB-module is isomorphic to exactly one such module.

Picking two vertices v0 and vk+1 in Γ, we are interested in the path between these two vertices.
These paths may take one of two forms. The most obvious form is below, where we take a direct
path between the two vertices as in Fig. 2.

v0 v1 v2 vk−1 vk vk+1E0 E1 Ek−1 Ek

Figure 2: A direct path.

If the exceptional vertex ve is present then it may be used as a turning point and so the path
may have a branch in it. This branch point, denoted vh, can be any non-exceptional vertex in
the path illustrated in Fig. 3. In particular, it is possible for h = −1 or h+ 2t = k, or both!

Now, given a chain of edges E1, . . . , Ek lying in one of the two cases illustrated in Figs. 2 and 3,
we define the set D to be either all of the even integers in {0, 1, . . . , k} or all of the odd integers
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v0

vk+1

vh ve

E0 E1

Eh

Ek Ek−1

Eh+2t+1

Eh+1

Eh+2t

Eh+t

Eh+t+1

Figure 3: A branching path containing the exceptional vertex ve.

in this set (note as k ≥ 1 at least D ̸= ∅). For each 1 ≤ i ≤ k, choose a uniserial module Mi

such that Mi
∼= M(Ei, Ei−1;ni) for i ∈ D and Mi

∼= M(Ei−1, Ei;ni) if i /∈ D for M(E,F ;n) as
described in Theorem 6.20.

If we are in the case of Fig. 2 and none of the vertices are exceptional then ni = 1 for all i,
otherwise 1 ≤ nj ≤ m if the vertex vj is exceptional. In the other case, as in Fig. 3, then ni = 1
provided i ̸= h+ t+ 1 and 2 ≤ nh+t+1 ≤ m. In particular, there is at most one i such that ni ≠ 1.

For each i, fix Vi ∼= headMi and Wi
∼= socMi such that if Vi ∼= Wi then Vi = Wi. Now, for

each i we may choose a surjective homomorphism φi : Mi → Vi and an injective homomorphism
ψi : Wi → Mi and make the following definitions.

X := {(m1,m2, . . . ,mk) ∈
k⊕
i=1

Mi | φi(mi) = φi+1(mi+1) for all i ∈ D, 0 < i < k},

Y :=
{ ∑
i∈D
i>1

ψi−1(f) ⊕ ψi(f) | f ∈ VEi−1

}
≤

k⊕
i=1

Mi,

finally, we define W := X/Y .

Note that in the definition of Y we mean that ψi(f) should be regarded as the element of
⊕k

i=1 Mi

with all entries zero except in the ith position.

At first glance, it is not entirely clear what such a module W really looks like. We shall illustrate
this with an example.

Example 6.21
Let Γ be the below Brauer tree. (This is the Brauer tree for the principal block of a Suzuki group
Sz(q) when p is an odd prime dividing q + 1)
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m
S1 S2

S3

S4

S5

S6

Take the path in Γ consisting of the edges labelled by S1, S2 and S5, in that order. Then this is a
path as in Fig. 2 with k = 2 and the edge E0 corresponding to S1, E1 corresponding to S2 and E2
corresponding to S5. Set D := {0, 2}. Then we have M1 := M(S1, S2; 1) and M2 := M(S5, S2;n)
for some 1 ≤ n ≤ m. We also have that M1 and M2 are both uniserial with M1 ∼ [S1 | S2] and
M2 ∼ [S5 | S2 | S6 | S5 | S2 | · · · | S2] where the section [S6 | S5 | S2] of M2 appears n− 1 times.

Now, since D = {0, 2} = {0, k} we actually have that the condition on X is empty and thus X =
M1 ⊕M2. Further, the module Y is the diagonal submodule {ψ1(f) ⊕ ψ2(f) | f ∈ S2} ≤ S2 ⊕ S2
which we may regard as the submodule {(s, s) | s ∈ S2} ≤ S2 ⊕ S2. Thus Y ≤ soc(M1 ⊕ M2)
is not contained in either M1 or M2. One can see that soc(X/Y ) ∼= (socX)/Y ∼= S2 and so we
have that W = X/Y has socle S2 such that W/ socW ∼= M1/ socM1 ⊕M2/ socM2 ∼= S1 ⊕ [S5 |
S2 | S6 | S5 | · · · | S5] and so we obtain the below picture of W .

W ∼ S1 ⊕

S5
S2
S6
S5
...
S6
S5

S2

Note that since the socle of W is irreducible, we in fact have that W may be realised as a
submodule of P(S2).

Example 6.22
Let Γ be the Brauer tree from Example 6.21 and take instead the path in Γ consisting of the edges,
in order, labelled by S1, S2, S2, S3. Then this is a path as in Fig. 3 with k = 3 and the edge E0
corresponding to S1, the edges E1 and E2 corresponding to S2 and the edge E3 corresponding
to S3. Set D := {1, 3}. As before, we have M1 := M(E1, E2; 1), M2 := M(E1, E2;n) for some
2 ≤ n ≤ m and M3 := M(E3, E2; 1) so that M1 ∼ [S2 | S4 | S1], M3 ∼ [S3 | S1 | S4 | S2] and
M2 ∼ [S2 | S5 | S6 | S2 | . . . | S6 | S2] with the section [S5 | S6 | S2] appearing n− 1 times.

In this case, then, we have

X := {(m1,m2,m3) ∈ M1 ⊕M2 ⊕M3 | φ1(m1) = φ2(m2)}.

Clearly we have that radM1 ⊕ radM2 ⊕M3 ≤ X and so, up to twisting by some automorphism
of S2, we have that X is the preimage under the quotient map of some diagonal submodule
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{(x, x) | x ∈ S2} ≤ S2 ⊕ S2, yielding a picture of X/M3 as follows.

X/M3 ∼

S2

S4
S1

⊕

S5
S6
S2
...
S6
S2

and similarly to before we see that X/M3 has a simple head and is thus a quotient of P(S2).

Y = {ψ2(g) ⊕ ψ3(g) | g ∈ S2}

and again we have that Y is an irreducible diagonal submodule of soc(M2 ⊕ M3) ∼= S2 ⊕ S2.
Collecting this information, we see that W := X/Y is as seen below, where the dashed lines
indicate a non-split extension between the indicated indecomposable modules.

S2

S4
S1

S5
S6
S2
...
S5
S6

S3
S1
S4

S2

From the above, it is possible to get an idea for what happens in the general case: One takes
uniserial modules with isomorphic heads and takes the preimage of some diagonal submodule of
the head of the direct sum to ‘stick together’ the modules. One may also do the same through
taking diagonal submodules of the socle of such modules, and alternating these processes one can
make long chains of uniserial modules which are ‘attached’ by simple modules in their socles and
heads.

Indeed, the below theorem shows that all indecomposable modules for blocks with cyclic defect
groups arise in this manner.

Theorem 6.23
For any module W defined as above, we have the following.

i) The isomorphism type of W is independent of the choice of the isomorphisms φi, ψi.

ii) Each such module W is indecomposable.

iii) Every non-projective indecomposable A-module is either irreducible or isomorphic to a module
W as constructed above.
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We now finish with the briefest look at what may happen in the non-cyclic case. We have already
seen in Example 3.25 that for G = Cp×Cp there are infinitely many indecomposable kG-modules,
and in fact by Theorem 6.19 we may infer that it is likely much more complicated than just this.
We shall instead look at a case that may not be quite so bad.

Example 6.24
Let G := PSL2(q) for q ≡ 1 mod 4 a prime power and suppose that p = 2. Let P ∈ SylpG. Then
P is dihedral of order (q− 1)2 (recalling that np denotes the p-part of n) and so by Theorem 6.19
we have that the representation type of G is tame. In fact, by work of Donovan and Freislich [8]
we know that the projective indecomposable kG-modules may be described by a Brauer graph
(not a tree!). Let B0 be the principal block of kG and, as usual, let k denote the trivial kG-module.
Let q = ra, R ∈ Sylr(G) and let B := NG(R). Then B (often called a Borel subgroup) may be
regarded as the image in G of the upper triangular matrices from SL2(q). Then the permutation
module of G acting on cosets of B has shape

IndGB k ∼
k

V ⊕W
k

for irreducible kG-modules V , W each of dimension 1
2 (q−1). It turns out that the only irreducible

modules in the principal block of kG are k, V and W .

The Brauer graph of the principal block in this case is given below. Brauer graphs function
exactly the same way as Brauer trees, though they clearly needn’t be trees and there needn’t be
a unique exceptional vertex with multiplicity greater than 1.

m
V W

k

Of course, in this case there is still only one vertex with multiplicity greater than one, but the
above graph is definitely not a tree. We may, however, still go on as usual and work out the
structure of the PIMs in this case. For clarity, once a complete cycle around a vertex has been
completed, we have indicated in bold when a new walk around that vertex has begun. Since
the vertex with multiplicity m is connected to all edges of the graph, every PIM has multiple
repeated composition factors (and we can see that in fact k appears in every second radical layer
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of every PIM in the principal block here!).

V
k
W
k
V
...
W
k
V

W
k
V
k
W
...
V
k
W

k
V W
k k
W V
k

⊕
k

...
...

k k
W V

k

In general, to construct indecomposable modules for such a group one may proceed similarly to
the above treatment given by Janusz and stick together modules as one walks along the Brauer
graph, but since the graph needn’t be a tree and there can be multiple vertices with multiplicity
greater than one, it is possible to create infinite cycles as one travels through the graph and thus
generate infinitely many indecomposable modules along the way.
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