Prod
By Maday's Th²,

$$(Ind_{L}^{G}u)_{L} \cong \bigoplus_{s \in L \setminus G/L} Ind_{L\cap L^{s}} S^{*}(U)$$

So that $Ind_{L}^{G}U$ has a summand U corr. to $s \in L$ and usum of modules induced from
 $L\cap L^{s}$ for $s \notin L$.
But P is a normal sylow P -subgr of L with $P\cap P^{s} = I \lor S \notin L$ So $P\cap P^{s} = I \in Sglp(L\cap L^{p})$
So $L\cap L^{s}$ is a P -group. But then every $L\cap L^{s}$ -module is $Prof^{ke}$ and so
 $(Ind_{L}^{G}U)_{L} = U \oplus Y$ for $Y Pog^{ke}$.

If
$$V = V_1 \oplus - \oplus V_n$$
 is semigrimple then
 $\mathcal{N}(V) = \mathcal{N}(V_1) \oplus \mathcal{N}(V_2) \oplus \cdots \oplus \mathcal{N}(V_n)$
and more generally $\mathcal{N}(V) \cong \mathcal{N}(head V)$

Now, the proj^{se} covering map
$$\pi: P \rightarrow M_{M}$$
 lifts to a map $\pi: P \rightarrow M$ whose image
is a uniserial Submodule of M Containing V. As Such, $M' \cap \pi'(P) = O$ and So
 $M = M \oplus \pi'(P)$. Since $\pi'(P) \neq O$ and M is indecompt., $M' = O$.

.

Lemma
Suppose G his a Cyclic normal Sylow P Subge Then every PIM for KG is unserved.
Suice chin W=1, VOU has unional submodule VOW with guilent VOK=V.
Suice chis not servisiviple, by lemma 3:23, for a generator
$$x \notin Q$$
 we may choose
 $0 \neq u \in (1-x)U = val U$. If for $0 \neq v \in V$ we have $(1-x)(vou) \neq 0$ then
 $val(vou) \neq 0$ and thus VOU is not ss.
Als Q $\subseteq G$, V_Q is ss. by Clifford's Th^C, and since Q is a P-gP, $(V_Q)^P = Soc(V_Q) = V_Q$.
So $xv = v$.
Thus
 $(1-x)(vou) = vou - xvox u = vou - voox u = vol(1-u)u \neq 0$.
Let U; denote the 1-dim KL-module on which g acts as a³. Thus U, OU, $\cong U$.

Let
$$U_{ij}$$
 denote the 1-dim KL-module on which g acts us a^{ij} . Then $U_{ij} \otimes U_{ij} \cong (J_{j+1})_{2}^{ij}$
Recall that V_{2} is the network KG-module with buss $[X, Y]$ where $g_{X} = a_{X+CY}$, $g_{Y} = a^{ij}Y$.
So r_{Y} is an L-submodule of V_{2} , iso to U_{-1} with $(V_{2})_{L}/U_{-1} \cong U_{1}$. So $(V_{2})_{L} \sim U_{1}$
We must true win this case to be U_{-2} .
Thus if M is indecomp. KL-module without $M \cong U_{ij}$, the valued factors of M are
 U_{ij}, U_{j+2}, U_{j+1} .
Part
Let M be the indecomp. KL-module of this P_{-1} and head U_{i-1} . Then M_{rad} in has dimit
and head U_{i-1} , thus M_{rad} in $\cong (V_{2})_{L}$ and head $(rad^{i} M)$ is $Soc(M_{rad}) \otimes (U_{-2} \cong U_{-1})_{-1}$.
But $dim(rad^{i} M) = (P_{-1}) \cdot i$ and so $rad^{i} M \cong (V_{P+i})_{L}$ ond so before $\cong U_{(P-1-i)-1}$.

$$O \rightarrow (V_{(P+i)})_{L} \rightarrow M \rightarrow (V_{i})_{L} \rightarrow O$$
Whin count Split as Mis indexnep. So we use done by Cor. Le. 2. \Box .
By O website a module V_{P+2}^{i} onto which $P_{i} = \mathcal{P}(V_{i})$ must surget. So
$$P_{i} \sim \begin{array}{c} V_{P+2}^{i} \\ V_{P+2} \\ V_{P+2} \end{array} for Some X_{i} (Passibly Zero) \\ X_{i} \\ V_{i} \end{array} Frequently, dim P_{i} > P with equality if $\mathcal{H}(P_{i}) \stackrel{a}{=} V_{P+2}$.
Sime by O with $U=2$, dim $P_{P+1} > 2P$ with equality iff $\mathcal{H}(P_{P}) \stackrel{a}{=} V_{2}$.
Some $V_{i} = V_{P+1}$ and $(red P_{i})_{M-1} \stackrel{a}{=} V_{P+1}$. $(dtim N=M_{i} \cap M_{i}, (red P_{i})_{M-1} \stackrel{a}{=} V_{P+1}$.$$

S.U. (Van Pr) = VALLI and (* 1791-
Vi
Vi
Pi ~ Volto Volti
Vi
Again, dim P: >>2p with eq. (=> X:=0. Moreover,
P(p²-1) = dim KG =
$$\sum_{i=1}^{p} dim V_i dim P_i$$

 $\Rightarrow p + 2p \sum_{i=2}^{p-1} i = (p-1)2p = p^2$
 $= p^3 - p = p(p^2 - 1)$

Fis the notation A = A, O = O An. Take un A-module M. If A: M = M and $A_0 M = O$ titig be say M his in the block A:

Where M: his in the block A: